自然语言处理之话题建模:Gibbs Sampling教程

自然语言处理之话题建模:Gibbs Sampling教程

在这里插入图片描述

自然语言处理基础

文本预处理

文本预处理是自然语言处理(NLP)中至关重要的第一步,它包括多个子步骤,旨在将原始文本转换为更易于分析和处理的形式。以下是一些常见的文本预处理技术:

  1. 分词(Tokenization):将文本分割成单词或短语的序列。
  2. 转换为小写(Lowercasing):将所有文本转换为小写,以减少词汇表的大小。
  3. 去除停用词(Stop Words Removal):从文本中移除常见的、不携带语义信息的词汇,如“的”、“是”、“在”等。
  4. 词干提取(Stemming):将单词还原为其词根形式,减少词汇表的大小。
  5. 词形还原(Lemma
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值