题意:从1-m中选取x,1-n中选取y,使得gcd(x,y)=k,求选取方法数
思路:利用莫比乌斯反演,题目等价于从1-m/k中选取x,1-n/k中选取y,使得gcd(x,y)=1,求选取方法数,我们设
f(k)=使gcd(x,y)等于k的选取数
F(k)=使gcd(x,y)等于k的倍数的选取数
我们可以容易得出F(x)=(m/x)*(n/x)
根据莫比乌斯反演公式f(k)=∑(k|d) mu(d/k)F(d)=∑(k|d) mu(d/k)((m/d)*(n/d))
其中mu为莫比乌斯函数,可以用线性筛法来得
所以f(1)=mu(1)*F(1)+mu(2)*F(2)+...+mu(min(m,n))*F(min(m,n))
最后还要去重,像(2,3) (3,2)这种,那么可以在两个数集重合的部分即1-min(m,n)中再计算一次选取数,最后的结果除以二就是重复的量
这个题也可以用容斥原理来做……有机会把容斥原理的代码补上,先说一下思路,因为探讨的是1-n/k中与1-m/k中互质的组合数,所以我们可以先确定一个数集,然后再一个一个的看另一个数集的数,假定n是m、n中比较小的那个数,下面拿n、m指代 n/k和m/k,1-n中与m互质的个数该怎么求呢,这个问题很眼熟啊,不就是容斥原理的一个经典问题吗,所以整个题都可以直接用容斥原理来做,但是直接这样枚举还是会有重复的,在计算时还要稍微处理一下,我们可以计算fun(i,min(i,n)),i是1-m,这样保证找的是小于i的与i互素的个数(表达不清楚)
完整代码:
#include<iostream>
#include<algorithm>
#include<cstdio>
#include<cstring>
using namespace std;
typedef long long LL ;
const int N=1000005;
bool check[N+5];
int prime[N+5];
int mu[N+5];
void miu()
{
memset(check,false,sizeof(check));
mu[1]=1;
int tot=0;
for(int i=2;i<=N;i++)
{
if(!check[i])
{
prime[tot++]=i;
mu[i]=-1;
}
for(int j=0;j<tot;j++)
{
if(i*prime[j]>N) break;
check[i*prime[j]]=true;
if(i%prime[j]==0)
{
mu[i*prime[j]]=0;
break;
}
else
mu[i*prime[j]]=-mu[i];
}
}
}
int main()
{
int t;
miu();
int cnt=0;
scanf("%d",&t);
while(t--)
{
cnt++;
int a,b,c,d,k;
scanf("%d%d%d%d%d",&a,&b,&c,&d,&k);
if(k==0)
{
printf("Case %d: 0\n",cnt);
continue;
}
b=b/k;
d=d/k;
int Max=min(b,d);
LL ans1=0;
LL ans2=0;
for(int i=1; i<=Max; i++)
{
ans1+=(LL)mu[i]*(b/i)*(d/i);
}
for(int i=1; i<=Max; i++)
{
ans2+=(LL)mu[i]*(Max/i)*(Max/i);
}
ans1=ans1-ans2/2;
printf("Case %d: %lld\n",cnt,ans1);
}
return 0;
}
补上容斥的代码:
#include <iostream>
#include <cstdlib>
#include <cstring>
#include <cstdio>
#include <cmath>
#include <vector>
using namespace std;
typedef long long LL;
vector<LL> p;
LL fun(LL n,LL m)
{
p.clear();
for(LL i=2;i*i<=n;i++)
{
if(n%i==0)
{
p.push_back(i);
while(n%i==0)
n/=i;
}
}
if(n>1) p.push_back(n);
LL S=0;
for(LL i=1;i<(1<<p.size());i++)
{
LL cnt=0;
LL mul=1;
for(LL j=0;j<p.size();j++)
{
if(i&(1<<j))
{
cnt++;
mul*=p[j];
}
}
if(cnt&1)
S+=m/mul;
else S-=m/mul;
}
return m-S;
}
int main()
{
int t;
while(scanf("%d",&t)!=-1)
{
LL a,b,c,d,k;
int num=0;
while(t--)
{
num++;
scanf("%lld%lld%lld%lld%lld",&a,&b,&c,&d,&k);
if(k==0)
{
printf("Case %d: 0\n",num);
continue;
}
b/=k;d/=k;
if(b>d) swap(b,d);
LL ans=0;
for(LL i=1;i<=d;i++)
{
ans+=fun(i,min(b,i));
}
printf("Case %d: %lld\n",num,ans);
}
}
return 0;
}