hdu1695 gcd 莫比乌斯反演

传送门

题意:从1-m中选取x,1-n中选取y,使得gcd(x,y)=k,求选取方法数

思路:利用莫比乌斯反演,题目等价于从1-m/k中选取x,1-n/k中选取y,使得gcd(x,y)=1,求选取方法数,我们设

f(k)=使gcd(x,y)等于k的选取数

F(k)=使gcd(x,y)等于k的倍数的选取数

我们可以容易得出F(x)=(m/x)*(n/x)

根据莫比乌斯反演公式f(k)=∑(k|d)  mu(d/k)F(d)=∑(k|d)   mu(d/k)((m/d)*(n/d))

其中mu为莫比乌斯函数,可以用线性筛法来得

所以f(1)=mu(1)*F(1)+mu(2)*F(2)+...+mu(min(m,n))*F(min(m,n))

最后还要去重,像(2,3) (3,2)这种,那么可以在两个数集重合的部分即1-min(m,n)中再计算一次选取数,最后的结果除以二就是重复的量

这个题也可以用容斥原理来做……有机会把容斥原理的代码补上,先说一下思路,因为探讨的是1-n/k中与1-m/k中互质的组合数,所以我们可以先确定一个数集,然后再一个一个的看另一个数集的数,假定n是m、n中比较小的那个数,下面拿n、m指代 n/k和m/k,1-n中与m互质的个数该怎么求呢,这个问题很眼熟啊,不就是容斥原理的一个经典问题吗,所以整个题都可以直接用容斥原理来做,但是直接这样枚举还是会有重复的,在计算时还要稍微处理一下,我们可以计算fun(i,min(i,n)),i是1-m,这样保证找的是小于i的与i互素的个数(表达不清楚)

完整代码:

#include<iostream>
#include<algorithm>
#include<cstdio>
#include<cstring>
using namespace std;
typedef long long LL ;
const int N=1000005;
bool check[N+5];
int prime[N+5];
int mu[N+5];
void miu()
{
    memset(check,false,sizeof(check));
    mu[1]=1;
    int tot=0;
    for(int i=2;i<=N;i++)
    {
        if(!check[i])
        {
            prime[tot++]=i;
            mu[i]=-1;
        }
        for(int j=0;j<tot;j++)
        {
            if(i*prime[j]>N) break;
            check[i*prime[j]]=true;
            if(i%prime[j]==0)
            {
                mu[i*prime[j]]=0;
                break;
            }
            else
                mu[i*prime[j]]=-mu[i];
        }
    }
}

int main()
{
    int t;
    miu();
    int cnt=0;
    scanf("%d",&t);
    while(t--)
    {
        cnt++;
        int a,b,c,d,k;
        scanf("%d%d%d%d%d",&a,&b,&c,&d,&k);
        if(k==0)
        {
            printf("Case %d: 0\n",cnt);
            continue;
        }
        b=b/k;
        d=d/k;
        int Max=min(b,d);
        LL ans1=0;
        LL ans2=0;
        for(int i=1; i<=Max; i++)
        {
            ans1+=(LL)mu[i]*(b/i)*(d/i);
        }
        for(int i=1; i<=Max; i++)
        {
            ans2+=(LL)mu[i]*(Max/i)*(Max/i);
        }
        ans1=ans1-ans2/2;
        printf("Case %d: %lld\n",cnt,ans1);
    }
    return 0;
}

补上容斥的代码:

#include <iostream>
#include <cstdlib>
#include <cstring>
#include <cstdio>
#include <cmath>
#include <vector>
using namespace std;
typedef long long LL;
vector<LL> p;
LL fun(LL n,LL m)
{
    p.clear();
    for(LL i=2;i*i<=n;i++)
    {
        if(n%i==0)
        {
            p.push_back(i);
            while(n%i==0)
                n/=i;
        }
    }
    if(n>1) p.push_back(n);
    LL S=0;
    for(LL i=1;i<(1<<p.size());i++)
    {
        LL cnt=0;
        LL mul=1;
        for(LL j=0;j<p.size();j++)
        {
            if(i&(1<<j))
            {
                cnt++;
                mul*=p[j];
            }
        }
        if(cnt&1)
            S+=m/mul;
        else S-=m/mul;
    }
    return m-S;
}
int main()
{
    int t;
    while(scanf("%d",&t)!=-1)
    {
        LL a,b,c,d,k;
        int num=0;
        while(t--)
        {
            num++;
            scanf("%lld%lld%lld%lld%lld",&a,&b,&c,&d,&k);
            if(k==0)
            {
                printf("Case %d: 0\n",num);
                continue;
            }
            b/=k;d/=k;
            if(b>d) swap(b,d);
            LL ans=0;
            for(LL i=1;i<=d;i++)
            {
                ans+=fun(i,min(b,i));
            }
            printf("Case %d: %lld\n",num,ans);
        }
    }
    return 0;
}


评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值