bzoj2301 莫比乌斯反演

传送门

题意:给出a、b、c、d、k,求在[a,b]内取一个数x,在[c,d]内取一个数y,使得gcd(x,y)=k的方法数

思路:可以说是hdu1695的升级版了,相当于在[a/k,b/k]中取一个x,在[c/k,d/k]中取取一个y,使得gcd(x,y)=1的方法数,定义一个solve函数,作用是求[1,m]内取x,[1,n]内取y,使得gcd(x,y)=1的方法数,根据hdu1695的思路,则f(1)=F(1)*mu(1)+...+F(min(x,y))*mu(min(x,y)),但如果还是这样做会超时,所以要用分块优化,贴一下分块优化的代码,其中的sum是莫比乌斯函数的前缀和:

int solve(int m,int n)
{
    int last;
    int ans=0;
    for(int i=1;i<=min(m,n);i=last+1)
    {
        last=min(n/(n/i),m/(m/i));
        ans+=(n/i)*(m/i)*(sum[last]-sum[i-1]);
    }
    return ans;
}

然后再用一下容斥,最后的结果为

ans=solve(b/k,d/k)-solve((a-1)/k,d/k)-solve((c-1)/k,b/k)+solve((a-1)k,(c-1)/k)

因为我们需要求得[a,b]和[c,d]这两个区间,仔细一想就明白了

还有一点这题必须要用int,用long long会WA,非常不解(??????)

完整代码:

#include<iostream>
#include<cstring>
#include<cstdio>
using namespace std;
typedef long long LL ;
const int N=50005;
bool check[N+5];
int prime[N+5];
int mu[N+5];
int sum[N+5];
int tot;
void miu()
{
    memset(check,false,sizeof(check));
    mu[1]=1;
    tot=0;
    for(int i=2;i<=N;i++)
    {
        if(!check[i])
        {
            prime[tot++]=i;
            mu[i]=-1;
        }
        for(int j=0;j<tot;j++)
        {
            if(i*prime[j]>N) break;
            check[i*prime[j]]=true;
            if(i%prime[j]==0)
            {
                mu[i*prime[j]]=0;
                break;
            }
            else
                mu[i*prime[j]]=-mu[i];
        }
    }
    sum[0]=0;
    for(int i=1;i<=N;i++)
        sum[i]=sum[i-1]+mu[i];
}

int solve(int m,int n)
{
    int last;
    int ans=0;
    for(int i=1;i<=min(m,n);i=last+1)
    {
        last=min(n/(n/i),m/(m/i));
        ans+=(n/i)*(m/i)*(sum[last]-sum[i-1]);
    }
    return ans;
}

int main()
{
    miu();
    int t;
    scanf("%d",&t);
    while(t--)
    {
        int a,b,c,d,k;
        scanf("%d%d%d%d%d",&a,&b,&c,&d,&k);
        int ans=solve(b/k,d/k)-solve((a-1)/k,d/k)-
        solve((c-1)/k,b/k)+solve((a-1)/k,(c-1)/k);
        printf("%d\n",ans);
    }
    return 0;
}



发布了76 篇原创文章 · 获赞 4 · 访问量 2万+
展开阅读全文

没有更多推荐了,返回首页

©️2019 CSDN 皮肤主题: 编程工作室 设计师: CSDN官方博客

分享到微信朋友圈

×

扫一扫,手机浏览