bzoj 2301 莫比乌斯反演

bzoj 2301 莫比乌斯反演
题意:
给出a,b,c,d, 求符合条件a <= x <= b && c <= y <= d && gcd(x,y)=k 的数对(x,y)的数目。

限制:
1 <= n,a,b,c,d,k <= 5*10^5

思路:
这道题可以化为:求 1 <= x <= t1 && 1 <= y <= t2 && gcd(x,y)=k 的数对(x,y)的数目。
这个问题可以用莫比乌斯反演解决。
设f(k)为gcd(x,y)=k的数对(x,y)的数目,
设F(k)为gcd(x,y)为k的倍数的数对(x,y)的数目,显然F(k)=floor(t1/k)*floor(t2/k),由于这道题case数比较多,所以暴力会超时,所以要通过分段来解决这个问题,复杂度为O(sqrt(n))。

/*bzoj 2301
  题意:
  给出a,b,c,d, 求符合条件a <= x <= b && c <= y <= d && gcd(x,y)=k 的数对(x,y)的数目。
  限制:
  1 <= n,a,b,c,d,k <= 5*10^5
  思路:
  这道题可以化为:求 1 <= x <= t1 && 1 <= y <= t2 && gcd(x,y)=k 的数对(x,y)的数目。
  这个问题可以用莫比乌斯反演解决。
  设f(k)为gcd(x,y)=k的数对(x,y)的数目,
  设F(k)为gcd(x,y)为k的倍数的数对(x,y)的数目,显然F(k)=floor(t1/k)*floor(t2/k),由于这道题case数比较多,所以暴力会超时,所以要通过分段来解决这个问题,复杂度为O(sqrt(n))。
 */
#include
#include
using namespace std;
#define LL long long
const int N=1e5+5;
int mu[N];
//O(nlog(n))
void getMu(){
	for(int i=1;im) swap(n,m);
	for(int i=1,last=0;i<=n;i=last+1){
		last=min(n/(n/i),m/(m/i));
		ret+=(LL)(sum[last]-sum[i-1])*(n/i)*(m/i);
	}
	return ret;
}
void predo(){
	sum[0]=0;
	for(int i=1;i
发布了214 篇原创文章 · 获赞 26 · 访问量 21万+
展开阅读全文

没有更多推荐了,返回首页

©️2019 CSDN 皮肤主题: 编程工作室 设计师: CSDN官方博客

分享到微信朋友圈

×

扫一扫,手机浏览