【算法实验一】--A题--【分治法】--二分查找

1001.二分查找

时限:1000ms 内存限制:10000K  总时限:3000ms

描述

给定一个单调递增的整数序列,问某个整数是否在序列中。

 

输入

第一行为一个整数n,表示序列中整数的个数;第二行为n(n不超过10000)个整数;第三行为一个整数m(m不超过50000),表示查询的个数;接下来m行每行一个整数k。

 

输出

每个查询的输出占一行,如果k在序列中,输出Yes,否则输出No。

 

输入样例

5
1 3 4 7 11
3
3
6
9

 

输出样例

Yes
No
No

解析:这个题总的来说很简单,利用分治法的基本思想,从中间一个开始找,因为是有序的,如果中间一个不满足的话就改变边界low和high,分别为mid+1或者mid-1(注意不是mid,避免重复查找),最终得到答案。有一个要注意的点是查询的while结束条件应该是while(low<=high),要加上等于,输出No的条件为low>high,其他的就没有什么问题了。代码如下:

#include <stdio.h>
#include <stdlib.h>
int main()
{
    int a[10001],m,k,n;
    scanf("%d",&n);
    for(int i=0;i<n;i++)
        scanf("%d",&a[i]);
    scanf("%d",&m);
    while(m--)
    {
        scanf("%d",&k);
        int low=0,high=n-1,mid=0;
        while(low<=high)
        {
            mid=(low+high)/2;
            if(a[mid]==k)
            {
                printf("Yes\n");
                break;
            }
            if(a[mid]>k)
                high=mid-1;
            else
                low=mid+1;
        }
        if(low>high)
            printf("No\n");
    }
    return 0;
}
 

### 分治法中的二分查找算法 #### 算法原理 二分查找算法,也称为折半查找算法,是在有序数组中查找特定元素的有效方法。该算法通过每次将搜索范围减半来快速定位目标元素的位置。具体来说,在每步操作中,算法会选取当前搜索区间的中间位置作为比较对象;如果中间位置的值等于要查找的目标,则返回成功;如果相等则根据大小关系决定继续在左半部分还是右半部分重复上述过程直到找到目标或确认存在于列表内[^1]。 #### 实现方式 以下是采用迭代形式实现的一个简单例子: ```python def binary_search_iterative(arr, target): low, high = 0, len(arr) - 1 while low <= high: mid = (low + high) // 2 if arr[mid] == target: return mid elif arr[mid] < target: low = mid + 1 else: high = mid - 1 return -1 ``` 对于递归版本而言,其实现逻辑相似但采用了函数调用来代替循环结构: ```python def binary_search_recursive(arr, target, low=None, high=None): if low is None and high is None: low, high = 0, len(arr)-1 if low > high: return -1 mid = (low + high) // 2 if arr[mid] == target: return mid elif arr[mid] < target: return binary_search_recursive(arr, target, mid+1, high) else: return binary_search_recursive(arr, target, low, mid-1) ``` #### 应用场景 此算法适用于任何已排序的数据集上执行精确匹配查询的任务。常见的应用场景包括但限于数据库索引管理、文件系统路径解析以及各类在线服务提供的即时反馈功能(如搜索引擎自动补全建议)。由于其O(log n)的时间复杂度特性,当面对大规模数据集合时表现尤为出色,能够在极短时间内完成检索工作[^2]。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值