SIFT算法实现图片匹配

SIFT (Scale-Invariant Feature Transform)是David Lowe 在1999发明的一种算法。它在世界范围内,作为图像对齐和对象识别的参考方法。此方法的鲁棒性能够检测场景的不同比例、角度和照明的因素。silx 中可用的实现使用 OpenCL,这意味着它可以在图形处理单元 (GPU) 和中央处理单元 (CPU) 上运行。在图像中检测到有趣的点(关键点),然后提取称为描述符的数据结构,即场景的特征,以便同一场景的两个不同的图像显示类似的描述符。描述符对转换(如平移、旋转、重新缩放和照明更改)不敏感,因此对图像拼接,这些使得SIFT非常有趣。
首先,从输入图像计算出描述符。然后,将它们相互比较,以确定要应用的几何变换,以便对齐图像。silx.opencl.sift 可以在大多数 GPU 和 CPU 上运行,提供更大的灵活性。通过 PyOpenCL 库OpenCL 进程从 Python 驱动,这是一个访问 OpenCL 并行计算 API 的模块。

在这里插入图片描述
pip install silx[full]
http://www.silx.org/
https://github.com/silx-kit/silx
http://www.silx.org/doc/silx/latest/description/sift.html

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值