Ford-Fulkerson算法的效率

Ford-Fulkerson算法通过Residual Graph寻找Augmenting Path,循环增加网络流直至无路径可增。算法效率受Augmenting Path选择影响,原始算法时间复杂度为O(mC),其中m为边数,C为最大边容量。为了提高效率,采用Scaling Max-Flow Algorithm,引入scaling parameter,降低时间复杂度至O(m^2*log2C),尤其在C值极大时效果显著。
摘要由CSDN通过智能技术生成

Ford-Fulkerson算法

利用Residual Graph来让一个有向图中的网络流,在由A流向B之后,还能产生一条虚拟的路径(Augmenting Path),能够使那些流量能够回流。如此循环地找源节点s流向终点t的路径,直到找不到这样的路径为止。


Ford-Fulkerson算法及改进后算法的效率

Ford-Fulkerson算法对于Augmenting Path的选择,直接影响到其执行效率。例如,一条容量较小的边之中的流反复改变方向的问题。如果用C来表示源节点s的所有边的最大容量,m表示图中边的总数,传统Ford-Fulkerson算法的时间复杂度为:O(mC)

通常m的值不会很大,但C的值有可能非常大。这时如果要改进算法的效率,可以使用一个scaling parameter,令其值为不超过s最大边容量的2的幂积。改进后的算法称之为Scaling Max-Flow

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值