1.离散化和面元划分
为了便于分析,连续数据常常被离散化或拆分为“面元”
有一组人员年龄数据,希望将这些数据划分为“18到25”,“26到35”,“36到60”,“60以上”几个面元
ages=[20,22,25,27,21,23,37,31,61,45,41,32]
bins=[18,25,35,60,100]
cats=pd.cut(ages,bins)
print cats
结果为:
[(18, 25], (18, 25], (18, 25], (25, 35], (18, 25], ..., (25, 35], (60, 100], (35, 60], (35, 60], (25, 35]]
Length: 12
Categories (4, object): [(18, 25] < (25, 35] < (35, 60] < (60, 100]]
pandas返回的是一个特殊的Categorical对象。你可以将其看做一组表示面元名称的字符串。实际上,它含有一个表示不同分类名称的levels数组以及一个年龄数据进行标号的labels属性
print cats.labels
print cats.levels
print pd.value_counts(cats)
结果为:
[0 0 0 1 0 0 2 1 3 2 2 1]
Index([u'(18, 25]', u'(25, 35]', u'(35, 60]', u'(60, 100]'], dtype='object')
(18, 25] 5
(35, 60] 3
(25, 35] 3
(60, 100] 1
dtype: int64
跟“区间”的数学符号一样,圆括号表示开端,而方括号则表示闭端(包括)。哪边是闭端可以通过right=False进行修改
print pd.cut(ages,[18,26,36,61,100],right=False)
结果为:
[[18, 26), [18, 26), [18, 26), [26, 36), [18, 26), ..., [26, 36), [61, 100), [36, 61), [36, 61), [26, 36)]
Length: 12
Categories (4, object): [[18, 26) < [26, 36) < [36, 61) < [61, 100)]
你也可以设置自己的面元名称,将labels选项设置为一个列表或数组即可
group_names=['Youth','YoungAdult','MiddleAged','Senior']
print pd.cut(ages,bins,labels=group_names)
结果为:
[Youth, Youth, Youth, YoungAdult, Youth, ..., YoungAdult, Senior, MiddleAged, MiddleAged, YoungAdult]
Length: 12
Categories (4, object): [Youth < YoungAdult < MiddleAged < Senior]
如果向cut传入的是面元的数量而不是确切的面元边界,则它会根据数据的最小值和最大值计算等长面元。
data=np.random.rand(20)
print pd.cut(data,4,precision=2)
结果为:
[(0.0093, 0.26], (0.0093, 0.26], (0.26, 0.5], (0.0093, 0.26], (0.75, 0.99], ..., (0.0093, 0.26], (0.0093, 0.26], (0.0093, 0.26], (0.75, 0.99], (0.5, 0.75]]
Length: 20
Categories (4, object): [(0.0093, 0.26] < (0.26, 0.5] < (0.5, 0.75] < (0.75, 0.99]]
qcut是一个非常类似于cut的函数,它可以根据样本分位数对数据进行面元划分。根据数据的分布情况,cut可能无法使各个面元中含有相同数量的数据点。而qcut由于使用的是样本分位数,因此可以得到大小基本相等的面元
data1=np.random.randn(1000)#正太分布
cats=pd.qcut(data1,4)#按四分位数进行切割
print cats
print pd.value_counts(cats)
结果为:
[(0.674, 3.476], [-3.0413, -0.617], (-0.617, -0.00668], [-3.0413, -0.617], [-3.0413, -0.617], ..., (-0.00668, 0.674], (0.674, 3.476], (-0.617, -0.00668], (0.674, 3.476], (-0.617, -0.00668]]
Length: 1000
Categories (4, object): [[-3.0413, -0.617] < (-0.617, -0.00668] < (-0.00668, 0.674] < (0.674, 3.476]]
(0.674, 3.476] 250
(-0.00668, 0.674] 250
(-0.617, -0.00668] 250
[-3.0413, -0.617] 250
dtype: int64
跟cut一样,也可以设置自定义的分位数(0到1之间的数值,包含端点)
print pd.qcut(data1,[0,0.1,0.5,0.9,1])
结果为:
[(-1.332, -0.0241], (-1.332, -0.0241], (-0.0241, 1.266], [-3.0457, -1.332], (-0.0241, 1.266], ..., (-1.332, -0.0241], (1.266, 3.0939], (-0.0241, 1.266], (-0.0241, 1.266], [-3.0457, -1.332]]
Length: 1000
Categories (4, object): [[-3.0457, -1.332] < (-1.332, -0.0241] < (-0.0241, 1.266] < (1.266, 3.0939]]
2.检测和过滤异常值
np.random.seed(12345)
data2=DataFrame(np.random.randn(1000,4))
print data2.describe()
结果为:
0 1 2 3
count 1000.000000 1000.000000 1000.000000 1000.000000
mean -0.067684 0.067924 0.025598 -0.002298
std 0.998035 0.992106 1.006835 0.996794
min -3.428254 -3.548824 -3.184377 -3.745356
25% -0.774890 -0.591841 -0.641675 -0.644144
50% -0.116401 0.101143 0.002073 -0.013611
75% 0.616366 0.780282 0.680391 0.654328
max 3.366626 2.653656 3.260383 3.927528
假设你想要找出某列中绝大值大小超过3的值
col=data2[3]
print col[np.abs(col)>3]
结果为:
97 3.927528
305 -3.399312
400 -3.745356
Name: 3, dtype: float64
要选出全部含有“超过3或-3的值”的行,你可以利用布尔型DataFrame以及any方法
print data[(np.abs(data2)>3).any(1)]
根据这些条件,即可轻松地对值进行设置。下面的代码可以将值限制在区间-3到3以内
data2[np.abs(data2)>3]=np.sign(data2)*3
print data2.describe()
结果为:
0 1 2 3
count 1000.000000 1000.000000 1000.000000 1000.000000
mean -0.067623 0.068473 0.025153 -0.00281
std 0.995485 0.990253 1.003977 0.989736
min -3.000000 -3.000000 -3.000000 -3.000000
25% -0.774890 -0.591841 -0.641675 -0.644144
50% -0.116401 0.101143 0.002073 -0.013611
75% 0.616366 0.780282 0.680391 0.654328
max 3.000000 2.653656 3.000000 3.000000
np.sign这个ufunc返回的是一个由1和-1组成的数组,表示原始值的符号
3.排列和随机采样
df=DataFrame(np.arange(5*4).reshape(5,4))
sampler=np.random.permutation(5)
print sampler
结果为:
[1 0 2 3 4]
然后就可以在基于ix的索引操作或take函数中使用该数组了
print df
print df.take(sampler)
结果为:
0 1 2 3
0 0 1 2 3
1 4 5 6 7
2 8 9 10 11
3 12 13 14 15
4 16 17 18 19
0 1 2 3
1 4 5 6 7
0 0 1 2 3
2 8 9 10 11
3 12 13 14 15
4 16 17 18 19
如果不想用替换的方式选取随机子集,则可以使用permutation:从permutation返回的数组中切下前k个元素,其中k为期望的子集大小
print df.take(np.random.permutation(len(df))[:3])
结果为:
0 1 2 3
1 4 5 6 7
3 12 13 14 15
4 16 17 18 19
要通过替换的方式产生样本,最快的方式是通过np.random.randint得到一组随机整数
bag=np.array([5,7,-1,6,4])
sampler=np.random.randint(0,len(bag),size=10)
print sampler
draws=bag.take(sampler)
print draws
结果为:
[4 4 2 2 2 0 3 0 4 1]
[ 4 4 -1 -1 -1 5 6 5 4 7]
4.计算指标/哑变量
另一种常用于统计建模或机器学习的转换方式是:将分类变量转换为“哑变量矩阵”或“指标矩阵”。如果DataFrame的某一列中含有k个不同的值,则可以派生出一个k列矩阵或DataFrame(其值全为1或0)
df1=DataFrame({'key':['b','b','a','c','a','b'],
'data1':range(6)})
print df1
print pd.get_dummies(df1['key'])
结果为:
data1 key
0 0 b
1 1 b
2 2 a
3 3 c
4 4 a
5 5 b
a b c
0 0 1 0
1 0 1 0
2 1 0 0
3 0 0 1
4 1 0 0
5 0 1 0
你有可能想给DataFrame的列加上一个前缀,以便能够跟其他数据进行合并。get_dummies的perfix参数可以实现该功能
dummies=pd.get_dummies(df1['key'],prefix='key')
df_with_dummy=df1[['data1']].join(dummies)
print df_with_dummy
结果为:
data1 key_a key_b key_c
0 0 0 1 0
1 1 0 1 0
2 2 1 0 0
3 3 0 0 1
4 4 1 0 0
5 5 0 1 0
如果DataFrame中的某行同属于多个分类,则事情就会有点复杂
mnames=['move_id','title','genres']
movies=pd.read_table('data/movies.dat',sep='::',header=None,names=mnames)
print movies[:10]
结果为:
move_id title genres
0 1 Toy Story (1995) Animation|Children's|Comedy
1 2 Jumanji (1995) Adventure|Children's|Fantasy
2 3 Grumpier Old Men (1995) Comedy|Romance
3 4 Waiting to Exhale (1995) Comedy|Drama
4 5 Father of the Bride Part II (1995) Comedy
5 6 Heat (1995) Action|Crime|Thriller
6 7 Sabrina (1995) Comedy|Romance
7 8 Tom and Huck (1995) Adventure|Children's
8 9 Sudden Death (1995) Action
9 10 GoldenEye (1995) Action|Adventure|Thriller
要为每个genre添加指标变量就需要做一些数据规整操作。首先,我们从数据集中抽取出不同的genre值
genre_iter=(set(x.split('|')) for x in movies.genres)
genres=sorted(set.union(*genre_iter))
现在,我们从一个全零DataFrame开始构建指标DataFrame
dummies=DataFrame(np.zeros((len(movies),len(genres))),columns=genres)
接下来,迭代每一部电影并将dummies各行的项设为1
for i,gen in enumerate(movies.genres):
dummies.ix[i,gen.split('|')]=1
再将其与movies合并起来
movies_windic=movies.join(dummies.add_prefix('Genre_'))
print movies_windic.ix[0]
结果为:
move_id 1
title Toy Story (1995)
genres Animation|Children's|Comedy
Genre_Action 0
Genre_Adventure 0
Genre_Animation 1
Genre_Children's 1
Genre_Comedy 1
Genre_Crime 0
Genre_Documentary 0
Genre_Drama 0
Genre_Fantasy 0
Genre_Film-Noir 0
Genre_Horror 0
Genre_Musical 0
Genre_Mystery 0
Genre_Romance 0
Genre_Sci-Fi 0
Genre_Thriller 0
Genre_War 0
Genre_Western 0
Name: 0, dtype: object
一个对统计应用有用的秘诀是:结合get_dummies和诸如cut之类的离散化函数
values=np.random.rand(10)
bins=[0,0.2,0.4,0.6,0.8,1]
print values
print pd.get_dummies(pd.cut(values,bins))
结果为:
[ 0.75603383 0.90830844 0.96588737 0.17373658 0.87592824 0.75415641
0.163486 0.23784062 0.85564381 0.58743194]
(0, 0.2] (0.2, 0.4] (0.4, 0.6] (0.6, 0.8] (0.8, 1]
0 0 0 0 1 0
1 0 0 0 0 1
2 0 0 0 0 1
3 1 0 0 0 0
4 0 0 0 0 1
5 0 0 0 1 0
6 1 0 0 0 0
7 0 1 0 0 0
8 0 0 0 0 1
9 0 0 1 0 0
5.字符串对象方法
val='a,b, guido'
print val.split(',')
结果为:
['a', 'b', ' guido']
split常常结合strip(用于修剪空白符(包括换行符))一起使用
pieces=[x.strip() for x in val.split(',')]
print pieces
结果为:
['a', 'b', 'guido']
利用加法,可以将这些子字符串以双冒号分隔符的形式连接起来
first,sencond,third=pieces
print first+'::'+sencond+'::'+third
结果为:
a::b::guido
但这种方式不实用。可以使用向字符串‘::’的join方法传入一个列表或元组
print '::'.join(pieces)
结果为:
a::b::guido
另一类方法关注的是子串定位。检测子串的最佳方式是利用python的in关键字(当然还可以使用index和find)
print 'guido' in val
print val.index(',')
print val.find(':')
结果为:
True
1
-1
注意find和index的区别:如果找不到字符串,index将会引发一个异常,而不是返回-1
此外还有一个count函数,可以指定返回指定子串的出现次数
print val.count(',')
结果为:
2
replace用于指定模式替换为另一个模式。也常常用于删除模式:传入空字符串
print val.replace(',','::')
print val.replace(',','')
结果为:
a::b:: guido
ab guido
6.正则表达式
python内置的re模块负责对字符串应用正则表达式。re模块的函数可以分为三个大类:模式匹配、替换以及拆分。
import re
text='foo bar\t baz \tqux'
print re.split('\s+',text)
结果为:
['foo', 'bar', 'baz', 'qux']
你可以用re.compile自己编译regex以得到一个可重用的regex对象
regex=re.compile('\s+')
print regex.split(text)
结果为:
['foo', 'bar', 'baz', 'qux']
如果只希望得到匹配regex的所有模式,则可以使用findall方法
print regex.findall(text)
结果为:
[' ', '\t ', ' \t']
matc和search跟findall功能类似。findall返回的是字符串中所有的匹配项,而search则只返回第一个匹配项。match更加严格,它只匹配字符串的首部
text="""Dave dave@google.com
Steve steve@gmail.com
Rob rob@gmail.com
Ryan ryan@yahoo.com
"""
pattern=r'[A-Z0-9._%+-]+@[A-Z0-9.-]+\.[A-Z]{2,4}'
#re.IGNORECASE的作用是使正则表达式对大小写不敏感
regex=re.compile(pattern,flags=re.IGNORECASE)
print regex.findall(text)
结果为:
['dave@google.com', 'steve@gmail.com', 'rob@gmail.com', 'ryan@yahoo.com']
search返回的是文本中第一个电子邮件地址(以特殊的匹配对象形式返回)
print m
print text[m.start():m.end()]
结果为:
<_sre.SRE_Match object at 0x0000000009209B90>
dave@google.com
另外还有一个sub方法,它将会匹配到的模式替换为指定字符串,并返回所得到的新字符串
print regex.sub('REDACTDE',text)
Dave REDACTDE
Steve REDACTDE
Rob REDACTDE
Ryan REDACTDE
假设你不仅想要找出电子邮件地址,还想将各个地址分成3部分:用户名、域名以及域后缀
pattern1=r'([A-Z0-9._%+-]+)@([A-Z0-9.-]+)\.([A-Z]{2,4})'
regex1=re.compile(pattern1,flags=re.IGNORECASE)
m=regex1.match('zhuheng@126.com')
print m.groups()
结果为:
('zhuheng', '126', 'com')
对于带有分组功能的模式,findall会返回一个元组列表
print regex1.findall(text)
结果为:
[('dave', 'google', 'com'), ('steve', 'gmail', 'com'), ('rob', 'gmail', 'com'), ('ryan', 'yahoo', 'com')]
sub还能通过诸如\1,\2之类的特殊符号访问各匹配项中的分组
print regex1.sub(r'Username:\1,Domain:\2,Suffix:\3',text)
结果为:
Dave Username:dave,Domain:google,Suffix:com
Steve Username:steve,Domain:gmail,Suffix:com
Rob Username:rob,Domain:gmail,Suffix:com
Ryan Username:ryan,Domain:yahoo,Suffix:com
对上面那个电子邮件正则表达式做一点小改动:为各个匹配组加上一个名称
regex2=re.compile(r"""
(?P<username>[A-Z0-9._%+-]+)
@
(?P<domain>[A-Z0-9.-]+)
\.
(?P<suffix>[A-Z]{2,4})""",flags=re.IGNORECASE|re.VERBOSE)
m=regex2.match('zhuheng@126.com')
print m.groupdict()
结果为:
{'username': 'zhuheng', 'domain': '126', 'suffix': 'com'}
7.pandas中矢量化的字符串函数
data4={'Dave':'dave@google.com','Steve':'steve@gmail.com',
'Rob':'rob@gmail.com','Wes':np.nan}
data4=Series(data4)
print data4
print data4.isnull()
结果为:
Dave dave@google.com
Rob rob@gmail.com
Steve steve@gmail.com
Wes NaN
dtype: object
Dave False
Rob False
Steve False
Wes True
dtype: bool
print data4.str.contains('gmail')
结果为:
Dave False
Rob True
Steve True
Wes NaN
dtype: object
这里也可以使用正则表达式,还可以加上任意re选项
print pattern
print data4.str.findall(pattern1,flags=re.IGNORECASE)
结果为:
[A-Z0-9._%+-]+@[A-Z0-9.-]+\.[A-Z]{2,4}
Dave [(dave, google, com)]
Rob [(rob, gmail, com)]
Steve [(steve, gmail, com)]
Wes NaN
dtype: object
有两个办法可以实现矢量化的元素获取操作:要么使用str.get,要么在str属性上使用索引
matches=data4.str.match(pattern1,flags=re.IGNORECASE)
print matches
print matches.str.get(1)
print matches.str[0]
结果为:
Dave (dave, google, com)
Rob (rob, gmail, com)
Steve (steve, gmail, com)
Wes NaN
dtype: object
Dave google
Rob gmail
Steve gmail
Wes NaN
dtype: object
Dave dave
Rob rob
Steve steve
Wes NaN
dtype: object
可以利用下面这种代码对字符串进行子串截取
print data4.str[:5]
结果为:
Dave dave@
Rob rob@g
Steve steve
Wes NaN
dtype: object