1、通常我们把分类错误的样本数占样本总数的比例称为“错误率”(error rate),即如果在m个样本中有a个样本分类错误,则错误率E=a/m;相应的,1-a/m称为“精度”(accuracy),即“精度=1一错误率”
2、正确率 = TP/(TP+FP)
召回率 = TP/(TP+FN)
假阳率 = FP/(FP+TN)

例如:

ROC与AUC
ROC全称是“受试者工作特征”(Receiver Operating Characteristic)曲线,其横轴是“假正例率”(False Positive Rate,简称FPR),纵轴是“真正例率”(True Positive Rate,简称TRP),两者分别定义为:
&nb

本文介绍了分类器性能的几个关键度量指标:错误率、精度、正确率、召回率和假阳率。重点讨论了ROC曲线和AUC的概念,ROC曲线展示了不同阈值下假正例率与真正例率的关系,AUC作为衡量分类器性能的平均指标,其值在0.5到1.0之间,1.0表示完美分类。此外,还提到了在处理非均衡分类问题时,如何通过调整阈值、代价敏感学习和数据改造来改善性能,如使用均方误差作为回归任务的评价标准。
最低0.47元/天 解锁文章
1714

被折叠的 条评论
为什么被折叠?



