机器学习 分类器的性能度量标准

实际的工作中,度量方式的选择不当可能会造成巨大的损失。如医疗领域、人机协作中的风险预测等。为了尽量减小决策风险,有必要选择正确的度量方式。

而一些我们中文意义上看着比较像的不易区别,这里记录一下。

  • 明确几个表示

    T P TP TP 真正例 , 识别为正,实际为正
    F P FP FP 假正例 , 识别为正,实际为负
    T N TN TN 真负例 , 识别为负,实际为负
    F N FN FN 假负例 , 识别为负,实际为正


  • 准确率
    A c c u r a c y = T P + T N T P + T N + F P + F N Accuracy=\frac{TP+TN}{TP+TN+FP+FN} Accuracy=TP+TN+FP+FNTP+TN

    正确的结果所占的比例


  • 精确率 P r e c i s i o n Precision Precision

    P r e c i s i o n = T P T P + F P Precision = \frac{TP}{TP+FP} Precision=TP+FPTP

    识别为正的样本中,真正为正例的比例


  • 召回率 R e c a l l Recall Recall

    R e c a l l = T P T P + F N Recall=\frac{TP}{TP+FN} Recall=TP+FNTP

    所有真正的正例样本中,被正确识别出来的比例


  • R O C ROC ROC

    真正例率(同召回率)
    T P R = T P T P + F N TPR=\frac{TP}{TP+FN} TPR=TP+FNTP

    假正例率
    F P R = F P F P + T N FPR=\frac{FP}{FP+TN} FPR=FP+TNFP

    R O C ROC ROC曲线的横坐标是 T P TP TP, 纵坐标是 F P FP FP

ROC 曲线用于绘制采用不同分类阈值时的 TPR 与 FPR。降低分类阈值会导致将更多样本归为正类别,从而增加假正例和真正例的个数。

这里关键的是要搞清楚分母。
总之,真正例率相对于实际的正例个数,假正例相对于实际的负例个数。


参考
google 机器学习文档


不小心发现了表情 😃 😦

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值