淮南草的博客

淮南草的博客

树回归

主要内容:CART算法、回归与模型树、树减枝算法 并在最后进行了 回归树、模型树以及标准回归之间的比较 CART算法: CART_regression.py ''' Created on 2018年8月1日 @author: hcl ''' from numpy import * d...

2018-07-31 13:18:56

阅读数 37

评论数 0

线性回归

主要内容:线性回归、局部加权线性回归、岭回归和逐步线性回归、预测乐高价格 岭回归和逐步线性回归可用于分析数据特征的重要性 1、普通线性回归-最小二乘法 linear_regression.py ''' Created on 2018年7月30日 @author: hcl ''' fro...

2018-07-30 21:27:19

阅读数 101

评论数 0

分类器性能的度量指标

1、通常我们把分类错误的样本数占样本总数的比例称为“错误率”(error rate),即如果在m个样本中有a个样本分类错误,则错误率E=a/m;相应的,1-a/m称为“精度”(accuracy),即“精度=1一错误率”   2、正确率 = TP/(TP+FP)      召回率 = TP/(...

2018-07-30 21:07:32

阅读数 317

评论数 0

AdaBoost

Adaboost的大概运作流程 1:选取某一列中的某一个阈值,作为分类点,并判断分类错误情况 2:通过对错分的样本增加权重,对错分样本减少权重 3:不断迭代到 最大跌打次数或者误差值为0,保存 最小错误率的单层决策树 4:通过最小单层决策树对新样本进行预测分类 adaboost.py ...

2018-07-30 20:24:52

阅读数 42

评论数 0

SVM

svm对手写识别的一个分类程序 手写识别训练中,只训练和识别了数字1 和数字9 import numpy as np def loadDataSet(fileName): dataMat = []; labelMat = [] fr = open(fileName) ...

2018-07-30 14:52:10

阅读数 62

评论数 0

逻辑回归

学习了机器学习实战和skicit learn上的的逻辑回归算法 logistic.py ''' Created on 2018年7月28日 @author: hcl ''' import numpy as np import time def loadDataSet(): da...

2018-07-28 11:14:05

阅读数 40

评论数 0

朴素贝叶斯

在调试过程中发现,朴素贝叶斯算法对于训练数据是比较敏感的,个人理解,基本上是通过输入的词条向量乘以类别向量并请求和,与词条向量乘以其他类别的词条向量并求和  之间一个概率值大小的比较。 实现的功能 1、对词条进行侮辱性留言检测 2、实现垃圾邮件的判断 navieBray.py from...

2018-07-27 21:42:29

阅读数 58

评论数 0

回归大杂烩

输入: import numpy as np import matplotlib.pyplot as plt from sklearn import linear_model,tree,svm,neighbors,ensemble def f(x1, x2): y = 0.5 * np...

2018-07-27 17:33:23

阅读数 42

评论数 0

分类大杂烩

''' Created on 2018年7月27日 @author: hcl ''' from sklearn.datasets import load_iris iris = load_iris() def shuffle_in_unison(a, b): assert len(...

2018-07-27 17:12:50

阅读数 65

评论数 0

决策树分类算法-ID3

  实现的功能:  1、对数值型数据和标称型数据 进行分类  2、可将决策树pickle于txt文件中 但是本人在scikit_learn包中 暂时没成功处理标称型数据 trees.py ''' Created on 2018年7月27日 @author: hcl ''' from...

2018-07-27 16:19:48

阅读数 32

评论数 0

KNN分类算法

1:使用机器学习实战中的knn算法对 普通样本进行了分类 2:分别使用该算法与scikit_learning中的knn 进行了手写数字的对比,发现scikit_learning分类贼慢   实现的功能:     1、对样本特征为[x1,x2,.....,xn-1,y],其中共有n-1个特征...

2018-07-27 09:31:10

阅读数 31

评论数 0

python 基础

META关键字: 1:通过MEAT 实现网页跳转 <!DOCTYPE html> <html> <head> <META http-...

2018-07-25 18:50:05

阅读数 29

评论数 0

Python+Django+mysql+eclipse 新建创建Django项目

参考博客:https://blog.csdn.net/cqxw2530/article/details/80182744 环境搭建就不说了,CSDN上许多博客都有很好的讲解。 在这里我使用eclipse来作为开发工具,关于eclipse+pydev这个相关文档网上有相关介绍。 我直接开始新建...

2018-07-23 22:33:39

阅读数 445

评论数 0

卷积神经网络

垂直边缘检测原理: 水平边缘检测原理: sobel scharr过滤矩阵: Padding    卷积运算:其实在深度学习中并不是真正意义上的卷积,而是互相关操作,(真正的卷积还有一个镜像操作) 下图中 n为图像大小,f为卷积大小,p为padding大小,s为步长大小  ...

2018-07-23 08:17:38

阅读数 65

评论数 0

结构化机器学习项目

 调试策略:   准确率和召回率   训练 验证 测试的数据集分布

2018-07-22 08:19:16

阅读数 49

评论数 0

win10 64 配置tensorflow1.9注意事项

我的电脑是win10 64 用的anconda,安装的是tensorflow1.9 gpu+CUDA 9.0 + cudnn v7.0 版本,在安装过程捣鼓了好久,尝试了还几个版本,以下是注意事项: 特别提醒:我的cuda默认装在C:\Users\hcl\AppData\Local\Temp\C...

2018-07-21 18:57:39

阅读数 746

评论数 0

深度学习DeepLearning.ai系列课程学习总结:14. Tensorflow入门

如果还没有安装Tensorflow的可以参考https://blog.csdn.net/zhuisaozhang1292/article/details/81147904 参考:https://www.missshi.cn/api/view/blog/59bbcb46e519f50d040002...

2018-07-21 14:44:52

阅读数 109

评论数 0

html中 css js Dom初探

输入: <!DOCTYPE html> <html lang="en"> <head> <met...

2018-07-20 19:23:51

阅读数 37

评论数 0

吴恩达Coursera深度学习课程 DeepLearning.ai 编程作业——Optimization Methods(2-2)

转至:https://blog.csdn.net/bxg1065283526/article/details/80210359 最终文件看最后附录   Optimization Methods Until now, you’ve always used Gradient Descent t...

2018-07-20 13:49:11

阅读数 81

评论数 0

改善深层神经网络:超参数调试、正则化以及优化 第一周作业3

神经网络反向传播过程中的梯度数值逼近/梯度检查 Gradient Checking Welcome to the final assignment for this week! In this assignment you will learn to implement and use gra...

2018-07-19 17:15:57

阅读数 84

评论数 0

提示
确定要删除当前文章?
取消 删除
关闭
关闭