关于新高考I卷压轴题最后一小问的一些思考

前情提要
本人高二,当我们数学老师在台上说新高考I卷会给足时间给最后一道题的最后一小题时,同桌饶有兴趣的让我介绍这个题,给同桌介绍这道题目的瞬间,突然灵光一闪,便有了以下做法:

第一问很简单,对于

1 , 2 , 3 , 4 , 5 , 6 1,2,3,4,5,6 1,2,3,4,5,6

不难发现只有 ( 1 , 2 ) , ( 5 , 6 ) , ( 1 , 6 ) (1,2),(5,6),(1,6) (1,2),(5,6),(1,6) 是合法的方案。

第二问也十分简单,但是具有启发性,对于:

1 , 2 , 3 , 4 , 5 , 6 , 7 , 8 , 9 , 10 , 11 , 12 , 13 , 14 1,2,3,4,5,6,7,8,9,10,11,12,13,14 1,2,3,4,5,6,7,8,9,10,11,12,13,14

去掉 ( 2 , 13 ) (2,13) (2,13) 之后:

1 , 3 , 4 , 5 , 6 , 7 , 8 , 9 , 10 , 11 , 12 , 14 1,3,4,5,6,7,8,9,10,11,12,14 1,3,4,5,6,7,8,9,10,11,12,14

抽取公差为 3 3 3 的若干序列,可以得到:

1 , 4 , 7 , 10 1,4,7,10 1,4,7,10

3 , 6 , 9 , 12 3,6,9,12 3,6,9,12

5 , 8 , 11 , 14 5,8,11,14 5,8,11,14

这样的三组,构造题给出构造方案即证毕。

对于第三问,我们可以考虑划分数列的一些性质

第一点是无编号性,对于长度一样的段划分的方案是一样多的。这些长度为 4 n + 2 4n+2 4n+2 的段的方案数可以令为 D n D_n Dn , 则可能存在一定递推关系。

第二点是可加性,对于之前存在的方案可以进行累加,也就是我们发现在 n = 3 n=3 n=3 ( 2 , 13 ) (2,13) (2,13) 数对是可分数列,那么在 n = 4 n=4 n=4 时同样存在 ( 2 , 13 ) (2,13) (2,13) 是可分数列。

考虑这个数列:

1 , 2 , 3 , 4 , 5 , 6 , 7 , 8 , 9 , 10 , 11 , 12 , 13 , 14 1,2,3,4,5,6,7,8,9,10,11,12,13,14 1,2,3,4,5,6,7,8,9,10,11,12,13,14

可以分成这样两段:

[ 1 , 2 , 3 , 4 , 5 , 6 , 7 , 8 , 9 , 10 ] , 11 , 12 , 13 , 14 [1,2,3,4,5,6,7,8,9,10],11,12,13,14 [1,2,3,4,5,6,7,8,9,10],11,12,13,14

1 , 2 , 3 , 4 , [ 5 , 6 , 7 , 8 , 9 , 10 , 11 , 12 , 13 , 14 ] 1,2,3,4,[5,6,7,8,9,10,11,12,13,14] 1,2,3,4,[5,6,7,8,9,10,11,12,13,14]

这两段的长度都是 4 ( n − 1 ) + 2 4(n-1)+2 4(n1)+2 ,容易知道他们的方案数为 2 × D n − 1 2 \times D_{n-1} 2×Dn1

但是你会发现中间的数对会被重复计算两次,也即是:

1 , 2 , 3 , 4 , [ 5 , 6 , 7 , 8 , 9 , 10 ] , 11 , 12 , 13 , 14 1,2,3,4,[5,6,7,8,9,10],11,12,13,14 1,2,3,4,[5,6,7,8,9,10],11,12,13,14

这一段的长度为 4 ( n − 2 ) + 2 4(n-2)+2 4(n2)+2 ,根据无编号性可知他们的方案数为 D n − 2 D_{n-2} Dn2

这样是对于之前贡献的累加,我们还需要考虑边上的贡献,也即是类似于 ( i , j ) , 1 ≤ i ≤ 4 , 11 ≤ j ≤ 14 (i,j), 1\leq i \leq 4, 11 \leq j \leq 14 (i,j),1i4,11j14

容易发现 ( 1 , 14 ) (1,14) (1,14) 是一个合法数对,根据第二问的启发可以知道 ( 2 , 13 ) (2,13) (2,13) 是一个合法数对。

下证: ( 2 , 4 n + 1 ) (2,4n+1) (2,4n+1) 为合法数对,且其中的公差都为 n n n

进行了一定的手玩之后,你发现 ( 2 , 4 n + 1 ) (2,4n+1) (2,4n+1) 可以被分为公差为 n n n 的若干个等差数列。

将他们列出来:

1 , n + 1 , 2 n + 1 , 3 n + 1 1,n+1,2n+1,3n+1 1,n+1,2n+1,3n+1
3 , n + 3 , 2 n + 3 , 3 n + 3 3,n+3,2n+3,3n+3 3,n+3,2n+3,3n+3
4 , n + 4 , 2 n + 4 , 3 n + 4 4,n+4,2n+4,3n+4 4,n+4,2n+4,3n+4
. . . ... ...
n , 2 n , 3 n , 4 n n,2n,3n,4n n,2n,3n,4n
n + 2 , 2 n + 2 , 3 n + 2 , 4 n + 2 n+2,2n+2,3n+2,4n+2 n+2,2n+2,3n+2,4n+2

你会发现之前对于 2 2 2 缺失的都会在 n + 2 n+2 n+2 里面拿到,而对于 4 n + 1 4n+1 4n+1 所确实的都会在 1 1 1 的序列之中拿到。

本质上是 m o d    n \mod n modn 剩余系的构造,去掉 2 , 4 n + 1 2,4n+1 2,4n+1 刚好能够做到。

构造题给出方案即证明,证毕。

所以我们有 D n = 2 × D n − 1 − D n − 2 + 2 D_n=2 \times D_{n-1} - D_{n-2}+2 Dn=2×Dn1Dn2+2

我们特令 D 0 = 1 D_0=1 D0=1 ,显然 1 , 2 {1,2} 1,2 只能拿走 ( 1 , 2 ) (1,2) (1,2)

如何化简这东西就显得很平凡了:

D n − D n − 1 = D n − 1 − D n − 2 + 2 D_n-D_{n-1}=D_{n-1}-D_{n-2}+2 DnDn1=Dn1Dn2+2

所以这是一个等差数列求和,容易知道:

D n − D n − 1 = 2 × n D_n-D_{n-1}=2 \times n DnDn1=2×n
D n − 1 − D n − 2 = 2 × ( n − 1 ) D_{n-1}-D_{n-2}=2\times (n-1) Dn1Dn2=2×(n1)
. . . ... ...
D 1 − D 0 = 2 D_1-D_0=2 D1D0=2

所以 D n = ( n + 1 ) n + 1 = n 2 + n + 1 D_n=(n+1)n+1=n^2+n+1 Dn=(n+1)n+1=n2+n+1

C 4 n + 2 2 = ( 4 n + 2 ) ( 4 n + 1 ) 2 C_{4n+2}^{2}=\frac{(4n+2)(4n+1)}{2} C4n+22=2(4n+2)(4n+1)

所以

P n = D n C 4 n + 2 2 P_n=\frac{D_n}{C_{4n+2}^{2}} Pn=C4n+22Dn

= 2 n 2 + 2 n + 2 16 n 2 + 12 n + 2 =\frac{2n^2+2n+2}{16n^2+12n+2} =16n2+12n+22n2+2n+2

= 1 8 + 4 n + 14 16 n 2 + 12 n + 2 =\frac{1}{8} + \frac{4n+14}{16n^2+12n+2} =81+16n2+12n+24n+14

显然有 P n > 1 8 P_n > \frac{1}{8} Pn>81 ,证毕。

  • 15
    点赞
  • 25
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值