关于数列相关的不动点的研究

关于数列相关的不动点的研究

形如 f ( x ) = a x + b c x + d f(x)=\frac{ax+b}{cx+d} f(x)=cx+dax+b 的函数,对于 a n + 1 = f ( a n ) a_{n+1}=f(a_n) an+1=f(an) 常见的做法是进行配凑。

a n + 1 = a × a n + b c × a n + d a_{n+1}=\frac{a\times a_n+b}{c\times a_n+d} an+1=c×an+da×an+b

同时减去 x x x 满足

a n + 1 − x = a × a n + b c × a n + d − x a_{n+1}-x=\frac{a \times a_n + b}{c \times a_n +d} -x an+1x=c×an+da×an+bx

= ( a − c x ) ( a n + b − d x a − c x ) c × a n + d =\frac{(a-cx)(a_n+\frac{b-dx}{a-cx})}{c\times a_n + d} =c×an+d(acx)(an+acxbdx)

为了满足同构,构造 − x = b − d x a − c x -x=\frac{b-dx}{a-cx} x=acxbdx

得到方程

c x 2 + ( d − a ) x − b = 0 cx^2 + (d-a)x - b =0 cx2+(da)xb=0

对于该二次方程的根进行讨论:

如果存在两个不同的实数根 x 1 , x 2 x_1,x_2 x1,x2

可得:

a n + 1 − x 1 = ( a − c x 1 ) ( a n − x 1 ) c × a n + d a_{n+1}-x_1=\frac{(a-cx_1)(a_n-x_1)}{c\times a_n+d} an+1x1=c×an+d(acx1)(anx1)
a n + 1 − x 2 = ( a − c x 2 ) ( a n − x 2 ) c × a n + d a_{n+1}-x_2=\frac{(a-cx_2)(a_n-x_2)}{c\times a_n+d} an+1x2=c×an+d(acx2)(anx2)

于是两式相除得到:

a n + 1 − x 1 a n + 1 − x 2 = a − c x 1 a − c x 2 × a n − x 1 a n − x 2 \frac{a_{n+1}-x_1}{a_{n+1}-x_2}=\frac{a-cx_1}{a-cx_2} \times \frac{a_n-x_1}{a_n-x_2} an+1x2an+1x1=acx2acx1×anx2anx1

所以我们得到 { a n + 1 − x 1 a n + 1 − x 2 } \{ \frac{a_{n+1} -x_1}{a_{n+1} - x_2} \} {an+1x2an+1x1} 是公比为 a − c x 1 a − c x 2 \frac{a-cx_1}{a-cx_2} acx2acx1 的等比数列。

如果只有一个实数根 x 0 x_0 x0

由韦达定理可得:

2 x 0 = a − d c , d = a − 2 c x 0 2x_0=\frac{a-d}{c},d=a-2cx_0 2x0=cad,d=a2cx0

a n + 1 − x 0 = ( a − c x 0 ) ( a n − c x 0 ) c ( a n − x 0 ) + ( a − c x 0 ) a_{n+1}-x_0=\frac{(a-cx_0)(a_n-cx_0)}{c(a_n-x_0)+(a-cx_0)} an+1x0=c(anx0)+(acx0)(acx0)(ancx0)

1 a n + 1 − x 0 = 1 a n − x 0 + c a − c x 0 \frac{1}{a_{n+1}-x_0}=\frac{1}{a_n-x_0}+\frac{c}{a-cx_0} an+1x01=anx01+acx0c

可以得到 { 1 a n + 1 − x 0 } \{ \frac{1}{a_{n+1}-x_0} \} {an+1x01} 为公差为 c a − c x 0 \frac{c}{a-cx_0} acx0c 的等差数列。

如果不存在实数解

我们知道一定存在一组共轭复数满足这个方程,为 z 1 , z 2 z_1,z_2 z1,z2

把公比记作 z 0 = a − c z 1 a − c z 2 z_0=\frac{a-cz_1}{a-cz_2} z0=acz2acz1 , 由于共轭复数的性质:

z 0 = a − c z 1 a + c z 1 = ( a − c z 2 ) 2 ∣ a − c z 1 ∣ z_0=\frac{a-cz_1}{a+cz_1}=\frac{(a-cz_2)^2}{|a-cz_1|} z0=a+cz1acz1=acz1(acz2)2

容易得到 ∣ z 0 ∣ = 1 |z_0|=1 z0=1 , 记 z 0 z_0 z0 的辐角为 θ \theta θ , z 0 = c o s θ + i s i n θ z_0=cos{\theta}+isin{\theta} z0=cosθ+isinθ

于是当 θ π \frac{\theta }{\pi} πθ 为有理数的时候, { a n } \{a_n\} {an} 为周期数列。也就是不断代入就可以得到循环节的那种章博涛最为擅长的找规律题。

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值