航空业正在经历一场前所未有的技术革命,人工智能正成为变革的主要催化剂。从停机坪到航站楼,从维修机库到客户服务中心,人工智能正在从根本上重塑航空公司的运营和服务方式。这种转变并非仅仅停留在理论上——全球主要航空公司已从人工智能投资中获益匪浅,展现出该技术对航空业最紧迫挑战的实际影响。
让我们来看看主要航空公司实施的数字化举措中一些最突出的现实案例。
英国航空公司于2023年初实施了人工智能优化的航线,显著节省了10万吨燃油,相当于节省了1000万美元的成本。同样,达美航空也彻底改变了其客户服务运营方式,目前95%的客户咨询都由人工智能聊天机器人处理,大大缩短了响应时间,并提升了乘客满意度。
人工智能的影响远不止这些肉眼可见的改进。在幕后,预测性维护系统正在改变航空公司维护机队的方式。美国西南航空公司与人工智能初创公司AIXI的合作体现了这一变革:人工智能如今能够协助工程师检测其 800 架飞机机队的缺陷,从而简化了曾经完全依赖人工的维护操作。与此同时,美国联合航空公司的 ConnectionSaver 系统展示了人工智能能够做出瞬间决策的能力,在乘客便利性和运营效率之间取得平衡——仅在不会影响后续航班的情况下才会为中转旅客保留航班。
或许最引人注目的是业界对人工智能在安全和精准运营方面的积极拥抱。汉莎航空在苏黎世机场实施人工智能进行风向预测,准确率提高了40%,这体现了人工智能如何增强飞行运营关键领域的决策能力。
航空领域的人工智能不仅仅是自动化,更是增强和提升人类能力。从阿联酋航空的沉浸式培训平台到捷蓝航空的生成式人工智能解决方案(该解决方案在一个季度内节省了73,000小时的客服时间),这些应用展示了人工智能如何赋能航空专业人员,使其更高效地工作,同时提升乘客体验。
本文探讨了人工智能对航空业的多重影响,分析了当前的应用场景、未来的可能性以及未来可能面临的挑战。
一、人工智能催化剂:航空商业模式的演变
近年来,航空业经历了一场根本性的变革,从传统的运营模式转向更敏捷、更面向服务的商业模式。这一变革为整个行业带来了人工智能驱动解决方案的必要性和机遇。
这一变革的核心是向基于服务的运营模式转变。空中导航服务提供商 (ANSP) 正逐渐摆脱维护庞大的专有空中交通管理系统的模式,转而采用灵活的服务模式,以降低资本支出并增强运营适应性。这种转变自然而然地为人工智能技术创造了机会,因为这些新的服务导向模式需要复杂的数据处理和预测能力才能有效运行。
航空业转向以客户为中心的战略也带来了变革。如今,航空公司的竞争不仅体现在航线和价格上,还体现在在整个客户旅程中提供个性化体验的能力上。这一根本性转变使得传统的人工客户服务和体验管理方式难以为继。庞大的客户数据量和个性化需求的复杂性,使得人工智能的实施不仅对航空公司有利,而且对于寻求在新格局中保持竞争力的航空公司来说至关重要。
可持续发展成为核心业务的当务之急,进一步加速了人工智能的应用需求。评判航空公司的标准不再仅仅在于其运营效率——它们现在必须在实现环境目标方面取得显著进展。这催生了对复杂优化工具的需求,这些工具能够平衡多个相互竞争的优先事项:燃油效率、航线优化和碳减排,同时保持盈利能力和服务质量。
即使是传统上简单的低成本航空公司 (LCC) 模式也已演变成更为复杂的运营模式。低成本航空公司如今正进军商务旅行市场,实施代理分销系统,并提供虚拟联运服务。这些新的运营复杂性需要先进的分析能力和自动化决策系统,而只有人工智能 (AI) 才能有效地大规模提供这些能力。
航空业商业模式的这些根本性转变创造了一个环境,使人工智能的应用不再是可有可无的,而是一项战略要务。航空业正朝着以服务为本、以客户为中心和以可持续发展为中心的运营模式发展,这带来了传统技术和手动流程无法充分应对的挑战。
一张详细的信息图展示了航空业商业模式的演变,重点介绍了以服务为基础的运营、以客户为中心的运营、收入多元化和可持续性,以及人工智能解决方案推动的各项转型。
二、航空业人工智能应用的关键挑战
航空业必须应对其作为在复杂的全球监管框架内运营的安全关键型行业所面临的挑战。这些挑战不仅仅是需要克服的技术障碍,它们代表着如何在创新与安全、效率与可靠性以及自动化与人工监管之间取得平衡的根本问题。
航空业人工智能应用挑战的核心在于该行业的标志性特征:对安全的坚定承诺。这体现在多个相互关联的挑战中,需要仔细考量并提出创新的解决方案。
数据是任何AI系统的首要障碍。航空业从各种来源生成海量数据:飞机传感器持续监测数千个参数,空中交通管制系统跟踪无数航班,天气系统不断更新数据,客运系统处理数百万笔交易。挑战不仅在于管理这些数据量,还在于将这些分散的数据流整合成连贯可靠的数据集,以便人工智能系统能够有效利用这些数据,同时保持数据的完整性和安全性。
监管环境带来了另一个独特的挑战。欧洲航空安全局 (EASA) 和其他监管机构正在努力制定框架,以适应人工智能创新,同时保持行业严格的安全标准。这催生了一个复杂的认证要求体系。
在这种背景下,网络安全成为一个尤为关键的问题。随着航空系统互联互通程度日益加深,且对人工智能的依赖程度日益加深,它们必须受到保护,以抵御日益复杂的网络威胁。这一挑战因不仅需要保护单个系统,还需要保护互联航空基础设施的整个网络而变得更加严峻。
或许,最具挑战性的是需要让人工智能系统做好应对不可预测事件的准备。航空业的运营环境极其复杂,即使是罕见事件也可能造成灾难性后果。人工智能系统必须能够处理这些极端情况——从极端天气条件到紧急情况——并保持与常规运营同等的可靠性。这不仅需要强大的技术解决方案,还需要全面的测试和验证程序,以便在几乎无限的潜在场景中验证人工智能的性能。
这些挑战虽然艰巨,但并非不可克服。它们代表着一个始终处于技术创新前沿的行业必然经历的成长阵痛。随着航空业不断应对这些挑战,这些解决方案很可能成为其他安全关键行业应用人工智能的蓝图。关键不在于逃避这些挑战,而在于以同样严格、安全第一的方法来应对这些挑战,这也是航空业在整个历史中创新方法的特点。
航空业人工智能应用面临的关键挑战:
-
安全性和可靠性
- 在创新的同时保持安全标准
- 在自动化和人工监管之间取得平衡
-
数据管理
- 整合多种数据源(飞机、交通、天气)
- 确保数据质量和安全
-
法规合规性
- 满足严格的航空安全标准
- 满足复杂的认证要求
-
网络安全
- 保护互联的航空系统
- 防御复杂的威胁
-
不可预测性
- 处理罕见事件和紧急情况
- 确保人工智能在所有场景下保持稳定的性能
三、航空业人工智能的五大应用案例
人工智能在商业领域的关键影响包括流程自动化、资源优化、客户体验、决策支持和预测能力。
1. 人工智能在飞行运营中的应用
智能飞行计划和航线规划
现代航空旅行的复杂性要求能够同时处理多个变量的复杂航线优化。通过分析海量数据集,人工智能解决方案能够制定兼顾天气模式、空域拥堵和燃油效率的最佳飞行计划。
阿拉斯加航空公司对 Flyways 人工智能平台的实施证明了这些系统的实际效果——在试验期间,调度员采纳了该平台 32% 的航线优化建议,从而显著提升了运营效率。
人工智能在飞行计划中的强大之处在于它能够同时处理多个数据流。这些系统持续分析天气预报、空中交通模式、机场状况和飞机性能数据,从而建议在保持航班时刻表完整性的同时最大限度地降低燃油消耗的航线。
与传统的飞行计划系统不同,人工智能解决方案可以根据不断变化的情况动态调整航线,在出现意外情况时为飞行员和调度员提供实时替代方案。
天气适应与风险规避
现代人工智能系统在湍流预测方面的准确率已高达 90%,这比传统预测方法有了显著提升。这种更高的准确率使其能够主动调整航线,从而减少乘客不适感和潜在的安全风险。该系统提供即时天气更新,并在出现危险情况时自动建议替代航线,从而确保更平稳、更安全的飞行。
燃油优化
这些系统通过持续分析多种因素来工作:
- 飞机重量和平衡
- 大气条件
- 高度优化
- 速度调整
- 风向和急流
人工智能在飞行过程中提供实时高度和速度调整建议,确保最佳燃油效率,同时保持航班时刻表的完整性。此功能不仅降低了运营成本,还通过最大限度地减少碳排放,为行业实现可持续发展目标做出了重大贡献。
动态调度和签派
人工智能已将调度和签派操作从静态的预定流程转变为动态的响应系统。这些智能系统分析历史数据和实时情况,以优化航班时刻表和资源分配。人工智能系统能够预测并缓解潜在的干扰,避免其对航班时刻表造成连锁影响,其影响远不止单个航班,而是延伸至整个运营网络。
飞行员辅助系统
人工智能在飞行运营中最显著的影响或许体现在驾驶舱内。现代飞行员辅助系统如同智能副驾驶员,在执行日常任务的同时,还能为复杂情况提供更强大的决策支持。
这些系统:
- 实时监控数千个飞机参数
- 在潜在系统异常变得至关重要之前检测它们
- 提供预测性维护警报
- 在恶劣天气条件下提供决策支持
- 协助遵守紧急程序
2. 人工智能在航空维护和工程中的应用
预测性维护
人工智能系统展现出卓越的能力,通过持续分析来自数千个飞机传感器、历史维护记录和飞行运营数据的数据流,减少了计划外维护并大幅降低了维护成本。它们能够预测潜在故障,将维护工作从被动应对转变为主动应对。
汉莎技术公司的状态分析解决方案正是这种转变的典范,它采用先进的机器学习算法分析传感器数据,并以前所未有的精度预测维护需求。这种全天候监控能力远远超出了人类的能力范围,提供了传统维护方法无法获得的洞察。
数字孪生
实体飞机资产的虚拟复制品为维护团队提供了前所未有的飞机性能和状态可视性。通用电气航空集团在发动机监控中实施的数字孪生技术展现了该技术的潜力,它能够实时优化性能、提高可靠性,同时显著降低维护成本。
- 数字孪生具备多种关键功能:
- 实时监控组件性能
- 用于测试维护场景的复杂仿真功能
- 详细分析系统交互
- 在实际实施之前对维护程序进行虚拟测试
检查系统
通过利用计算机视觉技术,这些系统能够以前所未有的精度分析视觉数据,识别人工检查员可能遗漏的缺陷和异常。
无人机技术与人工智能检查系统的结合,创造了一个极其强大的组合。自动化无人机现在可以执行常规目视检查,捕捉高分辨率图像,并通过人工智能算法进行分析,最后由人工检查员进行验证。这种方法不仅通过减少危险的人工检查需求来提高安全性,还能确保更一致、更全面的飞机状况记录。
库存管理转型
人工智能彻底改变了飞机零部件库存管理,引入了复杂的预测分析,可以优化库存水平并最大限度地降低成本。这些系统分析多个数据点以预测未来需求,包括:
- 历史使用模式
- 维护计划
- 飞机利用率
- 季节性变化
- 供应链动态
最终形成一个即时库存系统,该系统能够在降低仓储成本和最大限度降低零件过时风险的同时,保持最佳库存水平。人工智能系统还能分析供应商绩效和市场趋势,从而制定更具战略性的采购决策并改善供应商关系管理。
这些人工智能应用的影响超越了单个维护任务,而是改变了整个维护生态系统。通过整合预测性维护、数字孪生、自动检查和智能库存管理,航空公司可以实现前所未有的运营效率和可靠性。这种整体维护方法不仅可以降低成本,还可以通过确保更彻底、更一致的飞机维护实践来提高安全性。
3. 空中交通管理中的人工智能
轨迹预测与优化
现代人工智能算法能够同时处理多个数据流,从而创建高精度的四维轨迹预测,并综合考虑以下因素:
- 实时天气状况
- 当前空中交通模式
- 飞机性能特征
- 历史飞行数据
- 环境限制
这些系统会根据不断变化的条件不断调整预测,从而实现更精准的航线规划,从而降低油耗和排放。爬升和下降预测精度的提升尤其改善了这些关键飞行阶段的运营。
先进的冲突检测与解决技术
人工智能驱动的冲突检测系统彻底改变了识别和解决潜在飞机冲突的方式。这些系统处理大量实时数据,以便在潜在冲突变得至关重要之前就将其检测到,从而为空中交通管制员 (ATC) 提供:
- 潜在冲突的早期预警
- 按效率排序的多种解决方案
- 对建议解决方案进行实时影响分析
- 自动协调建议
人工智能能够比人类操作员更快地处理复杂场景,从而显著提高了空域安全性,同时减轻了管制员的工作负担。这使得 ATC 能够专注于战略决策,而不是例行冲突解决。
地面活动优化
在地面,人工智能系统正在通过复杂的活动优化改变机场运营。这些系统分析多种因素,以减少滑行时间并优化地面运营:
- 当前和预测的交通模式
- 登机口可用性和分配
- 跑道配置
- 天气状况
- 地面车辆活动
其结果是提高了地面运营效率,降低了燃油消耗,并提高了准点率。人工智能能够根据实时情况建议最佳跑道配置,这尤其提高了机场在高峰时段的吞吐量。
动态容量管理
人工智能通过预测分析和动态优化,为空域容量管理带来了新的功能。这些系统:
- 利用历史和实时数据预测交通模式
- 根据预测需求优化资源分配
- 动态调整扇区配置
- 平衡可用资源的工作量
这种动态的容量管理方法显著提高了空域利用率,同时减少了延误和运营成本。
远程塔台运营
人工智能与远程塔台运营的融合是现代空中交通管理 (ATM) 领域最具创新性的应用之一。人工智能增强型系统为管制员提供:
- 先进的视觉处理能力
- 自动异常检测
- 多机场监控能力
- 增强的态势感知工具
这些功能使得从单个远程位置管理多个机场成为可能,同时不会影响安全性或运营效率。事实证明,人工智能能够检测并向管制员发出潜在安全问题警报,这在远程运营中尤为重要。
4. 人工智能助力乘客体验
智能预订
现代人工智能预订系统已远远超越了简单的航班搜索引擎。这些先进的平台如今采用动态定价算法,持续分析市场行情、竞争对手定价和需求模式,从而提供最优票价。这让航空公司和乘客都受益——航空公司实现了收益最大化,而旅客则获得了更具竞争力的定价选择。这些系统的智能化还延伸到了个性化定制方面,机器学习模型会分析乘客过去的旅行行为,从而提供最相关的航班选项,显著提升预订体验。
简化机场流程
人工智能对机场流程的影响尤其体现在值机和登机环节。由先进人工智能算法驱动的面部识别和生物识别系统显著缩短了处理时间。达美航空和捷蓝航空等航空公司率先采用了这些技术,实现了从机场入境到登机的无缝衔接。这项技术不仅提高了效率,还通过更可靠的身份验证增强了安全性。
智能行李管理
人工智能彻底改变了行李处理方式,解决了航空旅行中最棘手的挑战之一。现代人工智能追踪系统提供了前所未有的行李移动可视性,而预测算法则有助于预防错误处理。
人工智能客户服务
人工智能对乘客体验最显著的影响或许体现在客户服务方面。现代人工智能聊天机器人已经彻底改变了航空公司的客户支持,展现出以下能力:
- 全天候提供乘客协助
- 自动处理高达 95% 的客户咨询
- 显著缩短响应时间
- 提供多语言的全面支持
这些人工智能应用的整合产生了协同效应,一个领域的改进可以提升其他领域的效率。例如,更精准的行李追踪信息可以提升客户服务的效率,而个性化的预订数据则可以提高值机流程的效率。这种互联互通的乘客体验提升代表着航空公司客户服务方式的根本性转变。
5. 航空领域的人工智能:安全与安保
威胁检测系统
人工智能驱动的威胁检测系统正在改变机场的安检流程:
- Neural Guard 开发的人工智能检测系统 EyeFox 利用深度学习计算机视觉技术分析 X 射线图像,威胁检测准确率超过 90%。
- 该系统通过区分潜在威胁与无害物体,最大限度地减少误报,减少不必要的人工检查。
- 持续学习算法能够适应新出现的威胁,确保系统始终领先于不断变化的安全挑战。
跑道入侵预防
人工智能技术正被用于防止跑道入侵并提升运营安全性:
- Selex ES 推出了 AeroBOSS 平台,该平台提供实时飞行和地面车辆跟踪,以防止跑道入侵。
- 该系统包含跑道入侵预警系统 (RIWS),可在车辆驾驶员进入跑道区域前发出警报。
- 人工智能驱动的跑道监控系统使用计算机视觉和机器学习算法来识别和跟踪跑道上的飞机、车辆和人员。
风险评估与缓解
人工智能增强航空业的风险评估与缓解策略:
- 机器学习算法分析海量数据,识别模式并预测潜在的安全问题。
- 人工智能系统可以评估飞行数据,确定与特定航线或飞机状况相关的风险等级。
- 预测性维护算法分析飞机系统的传感器数据,预测潜在故障,从而减少计划外停机时间并提高安全性。
应急响应优化
人工智能提升航空业的应急响应能力:
- 人工智能驱动的系统可以建议备选着陆点,传达最佳下降轨迹,并在紧急情况下提供即时故障排除步骤。
- 这些系统分析实时数据,提供可行的洞察和建议,以便在危急情况下改进决策。
- 人工智能模拟各种紧急情况,使机组人员能够在安全的虚拟环境中练习和改进他们的响应程序。
欺诈活动检测
人工智能正被用于打击航空业的欺诈行为:
- 机器学习算法根据数百个因素对预订进行评估和评分,以识别潜在的欺诈活动。
- 人工智能解决方案可以在预订请求阶段就标记可疑活动,保护航空公司免受欺诈和非欺诈退款的侵害。
- 这些系统减少了欺诈检测中的误报,在确保安全性的同时提高了批准率。
参考文件