组合数公式和“插板法”的使用


组合数:

C(i,j)=C(i-1,j-1)+C(i-1,j); 其中i>j


插板法:

http://wenku.baidu.com/link?url=E_CXB5nCyoC5Z2He2e7yAAG1E08r1mNK8ouni7Jr3IAj7fmP652DcgPcqBDNlOlsxpOZU7t8OHJmpddzwbbj7vp6B5pNuqnkzelfcWvGdTS


总结:

1:如果是把n个求放入k个盒子中(每个盒子必须要有球),那么由插板法得 方案数为 C(n-1,k-1);

2:如果是把n个求放入k个盒子中(盒子可以为空),那么由插板法得 方案数为 C(n+k-1,k-1);

这个问题涉及到排列组合的问题,尤其是当考虑分类指定数量的情况下。我们可以分为两部分来计算:分配20个不同的邮箱11个工位到7个大类别,然后每类内部再分配。 1. 首先,由于每个类别可以有任意数量的邮箱,我们需要计算的是“20个物品分配到7个类别”的组合数,这可以用公式 `C(n + k - 1, k - 1)` 来表示,其中 n 是物品数量 (20),k 是类别数量 (7)。这个公式实际上计算的是从n+6个位置中选择k-1个的位置作为分隔点来划分成k组的方式,即“插板法”(Combination with Repetition)。结果是 `C(25, 6)`。 2. 接着,对于每个类别内的邮箱分配,由于每个类别都是独立的,所以可以看作是单独处理每一个类别的邮箱分配。每个类别有剩余的邮箱数,可能是0到20个,我们用简单的乘法原理,每个类别都有C(20, x)种分配方式,x从0到20。 总的方法数就是这两个过程的结果相乘:`(C(25, 6))^7 * [C(20, 0) * C(20, 1) * ... * C(20, 20)]^7`。 以下是Python的一个简单代码演示: ```python from math import comb # 计算总的邮箱分配组合数 total_categories = comb(25, 6) # 计算每个类别内邮箱的分配组合数,这里用循环表示所有可能性 emails_per_category_combinations = 1 for i in range(7): emails_per_category_combinations *= comb(20, i) # 总的组合数 total_combinations = total_categories ** 7 * emails_per_category_combinations ** 7 total_combinations ``` 这段代码会计算出总的组合数。请注意,实际运行时可能需要一些时间,因为计算的值较大。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值