点云数据集

本文介绍了多个重要的点云数据集,包括ModelNet40、ShapeNetPart、S3DIS等,涵盖了点云分类、分割及室内场景理解等多个任务,详细解析了数据集的结构、规模及应用场景。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

Datasets(更多资源 -> 这里)


数据集概况(更新中…)

一、ModelNet40(点云分类)

普林斯顿ModelNet项目的目标是为计算机视觉、计算机图形学、机器人和认知科学领域的研究者们提供一个全面、干净的三维CAD模型集合, 该数据的主页地址https://modelnet.cs.princeton.edu, 数据最早发布在论文3D ShapeNets: A Deep Representation for Volumetric Shapes [CVPR 2015]上.

相关工作人员从数据中选择了常见的40类和10类构成数组子集, 分别表示为ModelNet40和ModelNet10, 且两个数据集都有orientation aligned的版本。实验中数据用到比较多的是ModelNet40, 有如下三种数据形式:

数据集modelnet40_normal_resampled.zipmodelnet40_ply_hdf5_2048.zipModelNet40.zip
文件大小1.71G435M2.04G
内容point: x, y, z, normal_x, normal_y, normal_z;
shape: 10k points
point: x, y, z;
shape: 2048 points
off格式, 具体参考这里
训练集 / 测试集9843 / 24689840 / 24689844 / 2468
下载地址modelnet40_normal_resampled.zipmodelnet40_ply_hdf5_2048.zipModelNet40.zip

二、ShapeNet Part(点云分割)

ShapeNet数据集是一个有丰富标注的、大规模的3D图像数据集, 发布于ShapeNet: An Information-Rich 3D Model Repository [arXiv 2015], 它是普林斯顿大学、斯坦福大学和TTIC研究人员共同努力的结果, 官方主页为shapenet.org.ShapeNet包括ShapeNetCore和ShapeNetSem子数据集.

ShapeNet Part是从ShapeNetCore数据集选择了16类并进行语义信息标注的数据集, 用于点云的语义分割任务, 其数据集发表于A Scalable Active Framework for Region Annotation in 3D Shape Collections [SIGGRAPH Asia 2016], 官方主页为 ShapeNet Part. 数据包含几个不同的版本, 其下载链接分别为shapenetcore_partanno_v0.zip (1.08G)和shapenetcore_partanno_segmentation_benchmark_v0.zip(635M). 下面就第2个数据集segmentation benchmark进行介绍:

从下面表格可以看出, ShapeNet Part总共有16类, 50个parts,总共包括16846个样本。该数据集中样本呈现出不均衡特性,比如Table包括5263个, 而Earphone只有69个。每个样本包含2000多个点, 属于小数据集。该数据集中训练集12137个, 验证集1870个, 测试集2874个, 总计16881个。[注意, 这里和下面表格统计的(16846)并不一样, 后来发现是训练集、验证集和测试集有35个重复的样本]

类别nparts/shapensamples平均npoints/shape
Airplane426902577
Bag2762749
Cap2552631
Car48982763
Chair437462705
Earphone3692496
Guitar37872353
Knife23922156
Lamp415462198
Laptop24452757
Motorbike62022735
Mug21842816
Pistol32752654
Rocket3662358
Skateboard31522529
Table352632722
Total50168462616

三、S3DIS(语义分割)

S3DIS是3D室内场景的数据集, 主要用于点云的语义分割任务。主页http://buildingparser.stanford.edu/dataset.html. (但官方主页我暂时访问不了了, 关于数据集背景的介绍性说明就不写了). 关于S3DIS的论文是Joint 2D-3D-Semantic Data for Indoor Scene Understanding [arXiv 2017]和3D Semantic Parsing of Large-Scale Indoor Spaces [CVPR 2016]. S3DIS从3个building的6个Area采集得到, Area1, Area3, Area6属于buidling 1, Area2和Area4属于building 2, Area5属于building 3. 常用的数据下载格式包括如下三种:

其中Stanford3dDataset_v1.2_Aligned_Version.zipStanford3dDataset_v1.2.zip都是完整场景的数据集, 每个点对应6个维度(x, y, z, r, g, b), 而indoor3d_sem_seg_hdf5_data.zip是对原始数据场景的切割,把大场景切割成1m x 1m的block: 完整数据集被切割成了23585个block, 每个block是4096个点, 每个点对应9个维度: 除了x, y, z, r, g, b信息外,剩余的3维是相对于所在大场景的位置(归一化坐标).

在这里插入图片描述

下面是由Stanford3dDataset_v1.2.zip数据统计得到的关于S3DIS的信息, 可能和论文中一些结果不太一致。S3DIS数据集由以上6个Area采集得到, 共包含272个场景, 可分为11种不同的场景(括号内为场景数量, 场景大小(点的数量)): office(156, 87w), conference room(11, 142w), hallway(61, 122w), auditorium(2, 817w), open
space(1, 197w), lobby(3, 242w), lounge(3, 146w), pantry(3, 58w), copy room(2, 52w), storage(19, 35w) and WC(11, 70w). 根据语义信息, 上述场景被分成14个类别, 如下表所示. 可以看到不同的类别也是不均衡的, 比如wall有1547个, 但sofa只有55个.

Totalcolumnclutterchairwindowbeamfloorwallceilingdoorbookcaseboardtablesofastairs
98332543882136316815928415473855435841374555517

四、3DMatch数据集(关键点、特征描述子、点云配准等)

请查看https://github.com/zhulf0804/3D-PointCloud/tree/master/3DMatch

### S3DIS 数据集概述 S3DIS(Stanford Large-Scale 3D Indoor Spaces Dataset)是一个大型的三维室内空间数据集,被广泛应用在点云分类、分割等领域。此数据集涵盖了多种类型的室内环境,例如办公室、会议室等,并提供详尽的点云资料与对应的语义标签[^1]。 #### 特征描述 该数据集中包含了六个不同区域内的大量房间样本,这些区域中的每一个都经过了细致入微的手动标注过程,确保了高质量的数据质量。此外,为了便于研究者们开展实验工作,官方还特别准备了一个预处理过的版本——`indoor3d_sem_seg_hdf5_data.zip`,它基于原始文件按每平方米切割成更小的部分来适应不同的算法需求[^2]。 #### 应用领域 由于其丰富的属性信息和多样的应用场景,使得S3DIS成为评估新型点云处理技术性能的理想平台之一。特别是对于那些专注于开发能够理解复杂环境中物体位置关系的方法而言尤为重要。比如,在PointNet++框架下就利用到了这一特性来进行有效的特征提取并完成最终的任务目标如语义分割等操作[^4]。 #### 获取途径 目前可以通过特定资源网站获取到完整的S3DIS数据集合及其衍生产品。具体来说: - 原始数据包名为 `Stanford3dDataset_v1.2_Aligned_Version.zip` - 经过初步加工后的片段化数据则保存于 `indoor3d_sem_seg_hdf5_data.zip` 上述两个压缩文档均可从指定链接处下载获得[^3]。 ```bash wget https://example.com/path_to_S3DIS_dataset_link unzip Stanford3dDataset_v1.2_Aligned_Version.zip -d ./s3dis_raw/ unzip indoor3d_sem_seg_hdf5_data.zip -d ./s3dis_preprocessed/ ```
评论 25
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值