视频质量诊断服务 && 视频质量诊断工具 && 图像/视频质量分析服务及工具 && 深度学习视频质量分析系统

概要

        根据客户的需求,基于Mongoose平台搭建了视频质量服务系统,该系统的主要功能包含生成base64图像数据、接收postman的数据参数推送、视频质量算法分析以及处理结果的指定地址推送功能,该系统已经在windows、centos、kylin、ubuntu等系统上做过相关适配工作,算法已经达到商业级应用需求。

        这次把之前积累的单机版工具和算法的server版本都做了说明,并记录一下自己的成果。

算法server运行用例

                          

Mongoose介绍

        Mongoose 是一个 C/C++ 网络库。它实现了事件驱动, TCP、UDP、HTTP、WebSocket、MQTT 的非阻塞 API。它连接设备 并将它们带到网上。自 2004 年以来,一些开源和商业 产品已经利用了它。它甚至运行在 国际空间站! Mongoose 使嵌入式网络编程变得快速, 坚固且简单。

        具体算法介绍,可以参考我的另一个博客:

在当前技术发展迅速的背景下,构建一个融合人工智能与机器学习的智能视频质量诊断系统显得尤为重要。本回答将基于提供的辅助资料《智能视频质量诊断:基于机器学习的算法改进与应用》来具体阐述构建过程。 参考资源链接:[智能视频质量诊断:基于机器学习的算法改进与应用](https://wenku.csdn.net/doc/rn8ko2vs93?spm=1055.2569.3001.10343) 首先,系统设计需要从数据预处理开始。对于原始视频数据,要进行去噪和格式转换等操作,确保数据清晰、格式统一,便于后续处理。这一阶段可采用图像处理库如OpenCV来辅助实现。 其次,特征提取是系统中的核心环节。在视频帧序列中,重要特征如边缘信息、亮度分布、纹理变化等对于视频质量的评估至关重要。可以使用如SIFT、HOG等特征描述符进行提取。 接下来是模型的训练。基于提取的特征,选择合适的机器学习算法进行训练。深度学习,尤其是卷积神经网络(CNN),在图像处理领域表现出色,能够自动提取高级特征,并进行质量评估。可以通过TensorFlow或PyTorch框架来构建和训练深度学习模型。 评估与优化阶段,需要准备一个独立的验证集,通过验证集的测试结果反馈调整模型参数,提升模型的准确性和泛化能力。同时,可以使用交叉验证等技术评估模型的稳定性。 最终,实现实时监控需要优化算法的计算效率,并设计有效的算法来适应大规模视频流处理。可以通过模型剪枝、量化等技术减少模型大小和提高计算速度。 该系统不仅可以用于监控视频质量的实时诊断,还可以作为后处理工具,对已存储的视频资料进行质量检查。通过不断优化和升级算法,提高系统的智能化水平,减少维护工作,确保监控系统的高效运行。 在深入学习该系统的设计与实现过程中,推荐关注《智能视频质量诊断:基于机器学习的算法改进与应用》这一资源,它将帮助你从理论到实践深入理解视频质量诊断的各个环节,并提供实际的项目应用指导。 参考资源链接:[智能视频质量诊断:基于机器学习的算法改进与应用](https://wenku.csdn.net/doc/rn8ko2vs93?spm=1055.2569.3001.10343)
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值