
教学-交流-科普
文章平均质量分 85
记录有与教学、交流和相关科普活动相关的内容
卓晴
清华大学自动化系教师。
展开
-
信号与系统分析2025(春季)作业要求:第十四次作业
然后利用DFT求取其中的主要周期分量,根据周期分量所对应的数据便可以得到对应的线圈的匝数。声音信号, 接受信号通过对比调频无线接收机得到的声音信号与麦克风测量的声音信号,获得信标相对于麦克风的声音延迟,进而可以获得信标的方位。如果计算出该序列的DFT, 请估计使用 DFT 公式直接计算,以及使用 FFT 计算所需要的时间。之间的均匀分布的随机噪声, 形成两个带有噪声的 Chirp 信号。计算两个序列的圆卷积, 圆卷积的长度分别取 7, 8。中给出的示例, 利用DFT求取下面图像中,线圈的匝数。原创 2025-05-29 14:16:41 · 445 阅读 · 0 评论 -
罗兰C导航信号
本文介绍了罗兰C导航信号的定义、频谱分析及自相关特性。罗兰C是一种低频无线电波导航信号,通过地面基站发射,导航船只通过检测信号延迟推算位置。信号波形基于100kHz正弦波,采用多项式与指数函数调幅。通过FFT计算频谱,发现100kHz处有峰值,符合调制频率。自相关函数通过卷积计算,波形较宽。文章总结了罗兰C信号的频谱和自相关特性,并提供了相关代码实现。原创 2025-05-22 22:06:14 · 367 阅读 · 0 评论 -
信号与系统分析2025(春季)作业要求:第十三次作业
文章主要介绍了信号与系统课程的相关作业和考试内容,涵盖了系统频率特性、零极点分布、滤波器特性、全通系统、最小相位系统等主题。作业要求包括根据系统函数绘制频率特性、判断滤波器幅频特性、求解全通系统传递函数及条件、判断最小相位系统等。实验部分涉及罗兰C导航信号的分析,包括其数学表达式和波形绘制。文章还提供了2023年和2024年春季学期的期末考试命题及参考答案汇总,帮助学生复习和准备考试。原创 2025-05-22 12:58:27 · 1016 阅读 · 0 评论 -
信号与系统分析2025(春季)作业要求:第十二次作业
本文汇总了信号与系统课程在2024年春季学期的作业要求及参考答案,并提供了2023年春季学期期末考试的命题内容。文章详细列出了多个作业题目,涵盖了序列的傅里叶变换、系统框图与系统函数、以及利用系统函数分析输入输出等内容。具体题目包括求序列的DTFT、连续时间系统的系统函数与稳定性分析、离散时间系统的系统函数与稳定性判断等。此外,文章还提供了模拟考试和正式考试试题的链接,帮助学生更好地准备期末考试。原创 2025-05-15 11:24:11 · 848 阅读 · 0 评论 -
信号与系统分析2025(春季)作业要求:第十一次作业
本文汇总了信号与系统课程在2024年春季学期的作业要求及参考答案,涵盖了Laplace变换和z变换的基础作业。作业内容包括利用Laplace变换的初值和终值定理求解信号的初值和终值,以及利用z变换的性质求解序列的z变换、初值和终值。此外,还涉及序列卷积和乘积的z变换求解,以及利用Laplace变换和z变换求解微分和差分方程,并分析系统的零输入响应、零状态响应、自由响应和强迫响应。作业分为必做题和选做题,旨在帮助学生深入理解信号与系统的核心概念和计算方法。原创 2025-05-09 10:06:41 · 944 阅读 · 0 评论 -
信号与系统分析2025(春季)作业要求:第十次作业
注: 先求单个周期 Laplace变换, 再应用延迟定理进行求解。单个周期的Laplace变换可以利用微分和积分性质求解。求下列信号的 单边 Laplace 变换, 并绘制变换结果对应的零极点分布。这个定理在课上没有讲解, 请大家参考Laplace变换性质表格中对应的特性;求下面 Laplace变换结果的反变换。命令完成Laplace变换和z变换以及反变换。1、利用Laplace变换性质求解Laplace变换。z 反变换, 请注意收敛域对变换结果的影响。一、MATLAB中的Laplace,ZT的变换。原创 2025-04-24 15:01:20 · 1086 阅读 · 0 评论 -
关于2025年校庆及五一放假调课安排的通知
原排在4月26日(星期六)、4月27日(星期日)、4月29日(星期二)、4月30日(星期三)、5月1日(星期四)、5月10日(星期六)的课程停上,所缺课时不补。原排在5月2日(星期五)的课程调整到4月29日(星期二),原排在5月5日(星期一)的课程调整到5月10日(星期六)进行。4月26日(星期六)、4月27日(星期日、校庆日)教职工照常上班。原排在5月3日(星期六)、5月4日(星期日)的课程照常进行。关于2025年校庆及五一放假调课安排的通知。4月30日至5月5日放假调休,共6天。原创 2025-04-23 15:06:25 · 1545 阅读 · 0 评论 -
信号与系统分析2025(春季)作业参考答案 - 第八次作业
同步解调是将调制信号与载波信号相乘, 然后再通过低通滤波器获得信号频谱的方法。对于下边带调制信号, 将其与载波信号相乘, 乘积信号的频谱是调制信号左右搬移之后叠加的频谱。下图显示, 当下边带信号左右搬移之后, 可以合成信号本身的频谱。经过低通滤波器滤除高频信号之后, 便可以恢复原调制信号, 信号幅值比原始信号降低了四倍。根据信号的表达式, 可以知道信号的最大值不超过 64+52=116V。信号调制, 由于调制信号与同步解调振荡信号之间相差 90°, 它们之间正交, 因此,系统输出为。原创 2025-04-13 11:03:24 · 817 阅读 · 0 评论 -
打火电路 MOS 功率管对应的电压波形
前几天, 对于这款电弧打火电路中的 功率管替换成 N沟道的 MOS管。¡¿¡¿下面准备测量与拆下它的集电极和栅极的电压信号。看一下与是普通的 NPN 三极管有什么样的不同。¡¿¡¿此外, 再测试一下, 将栅极电阻去掉, ¡¿¡¿同时将二极管 D1 也去掉, 看是否仍然能够震荡。这样的改动有一个危险, 那就是反馈电压有可能会造成NMOS 管栅极反向被击穿。¡¿¡¿不管他了, 击穿MOS管我也认了。¡¿¡¿就当最后验证一下这个最简单的改动方案是否可行。原创 2025-04-11 17:29:03 · 374 阅读 · 0 评论 -
信号与系统分析2025(春季)作业要求:第八次作业
02实验作业一、信号调制与解调1、绘制波形与频谱已知两个正弦调幅信号的表达式为:其中ωc4Ωm。求出这两个信号的频谱Y1ωY2ω;大致绘制出它们的时域和频域信号波形。注:在绘制波形的时候, 其中的参数ωcΩm可以自行选择一个合适的数值完成波形绘制。可以使用辅助绘图。已知正弦调幅信号为:请绘制该信号波形, 以及采用“”后的波形。注:(1) “” 大家可以近似将信号大于零的上半周的顶点连接在一起,形成检波信号;原创 2025-04-10 10:37:58 · 1060 阅读 · 0 评论 -
信号与系统分析2025(春季)作业参考答案 - 第七次作业
是有现长信号, 所以它的导数,以及二阶导数对应的面积都是 0。周期三角信号可以看成下面窄的三角信号周期延拓, 再减去 1。,高度为 E 中心在 0 点的等腰三角形脉冲往右延迟。周期信号的频谱是对上述单个周期内信号连续频谱的。周期信号的频谱是单个周期信号连续频谱的。将上面四个频谱叠加在一起, 再除以。那么周期三角信号的频谱是对上述信号进行。进行卷积, 然后将卷积结果叠加在一起。原创 2025-04-08 16:01:11 · 674 阅读 · 0 评论 -
柯西-施瓦兹不等式
在这里只证明在两个函数都是实数函数的情况, 假设使用 g(x) 的倍数去逼近 f(x)。两者之间的误差信号能量是对误差信号平方的积分。将系数使用它们各自的表达式替代, 此时, 我们就得到了所需要证明的 柯西-施瓦兹不等式了。, 它们之间的乘积, 使用傅里叶变换的微分性质以及能量守恒定理, 可以将乘积表达式更换为时域的乘积, 最后一步需要使用到 柯西-施瓦兹不等式, 合并分子乘积两项, 最后得到证明的结果。这是其需要应用的柯西-施瓦兹不等式究竟如何证明, 下面给出它的常见到的证明过程。原创 2025-04-08 09:03:16 · 398 阅读 · 0 评论 -
如果要求二次多项式始终大于0的条件是什么?
对该多项式进行化简, 合并前面两项, 最终, 可以得到最低点的y坐标。所以, 分子满足大于等于0, 这样就可以保证二次多项式大于等于0。由此我们得到了二次多项式系数所满足的条件, 使得该二次多项式始终大于等于 0。对于实数二次多项式, 如果要求它始终大于等于0, 那么,该多项式的系数需要满足什么条件呢?首先, 我们看到, 多项式对应的二次曲线, 只有当 二次项系数 a 大于零时, 才具有极小点。在二次项系数大于0的 情况下, 二次多项式的判别式小于0, 对应 b的平方小于4ac。原创 2025-04-07 23:33:55 · 247 阅读 · 0 评论 -
信号与系统分析2025(春季)作业要求:第七次作业
使用MATLAB中使用spectrogram 命令观察音乐及其变换后的数据是时频联合分布, 总结节奏变化一是尺度变化两种操作在听觉和信号时频联合分布之间的差别。提示: 关于等腰三角形脉冲信号的频谱可以查询课件中给出的答案。冲激信号的强度,实际上是前后两个折线斜率的差值。提示, 利用对偶特性写出三角信号对应的时域信号, 再应用频移特性求信号的表达式。的频谱实际上是它自己的频谱与自己的频谱卷积。图中的三角形的参数已经给出, 请写出卷积之后信号的频谱。利用傅里叶变换的性质, 求解下面信号的频谱。原创 2025-04-02 23:06:37 · 941 阅读 · 0 评论 -
信号与系统分析2025(春季)作业参考答案 - 第六次作业
为了验证上述结果, 使用Python中的 IFFT工具, 将给定的频谱进行饭变化, 对比一下结果与理论推导结果之间是否一致。进行尺度变换, 无穷压缩, 所以对应的取值都是 0。利用傅里叶变换的频移特性进行求解。下面使用Python 绘制的e信号的幅度谱和相位谱, 取其中的。, 所以上述函数图像也是从对应的参考答案拷贝过来的。利用傅里叶变换的尺度特性, 频移特性进行求解。的幅度与题目给定的方波(高为E, 宽度为。这一道题目, 也可以应用傅里叶变换的。, 便可以得到前面一样的结果了。, 该矩形的极限趋向于。原创 2025-04-01 15:28:56 · 840 阅读 · 0 评论 -
信号与系统分析2025(春季)作业要求:第六次作业
对于声音信号进行相同的分析,分别从声音信号中的幅度谱和相位谱还原对应的声音,讨论一下从哪一部分可以听出原来的声音信号。大家可以通过试听恢复的声音信号,看幅度谱中和相位谱恢复的音频中哪一个还可以听出原来的歌曲。将计算结果中的相位都置为0, 进行傅里叶反变换, 获得图片频谱中幅度图像信息。将计算结果中的幅值都置为1, 进行傅里叶反变换,获得图片频谱中的相位图像信息。直接根据傅里叶反变换公式,将下面信号的频谱进行反变换,获得信号时域波形。直接根据傅里叶反变换公式,将下面信号的频谱进行反变换,获得信号表达式。原创 2025-03-27 16:13:57 · 813 阅读 · 0 评论 -
吉布斯现象:你说的,我怎么不相信呢?
他将傅里叶级数分解合成波形的过冲峰值, 按照合成级数项的增加绘制出变化的曲线, 可以看到, 在合成级数项数从1增加到20 的时候, 过冲幅度降低, 并且很快达到9%左右, 可是随着级数增加, 过冲的幅度便出现了波动。现在, 他将信号波形的采样, 从一个周期中的1000个点, 提高到5000个点, 同样绘制出前面1000项傅里叶级数波形过冲的幅度, 对应的变化就更小了。关于傅里叶级数分解的收敛性的讨论中, 吉布斯现象是展示傅里叶级数分解按照误差能量收敛的模式进行收敛, 而非一致收敛的典型案例。原创 2025-03-25 10:30:09 · 794 阅读 · 0 评论 -
信号与系统分析2025(春季)作业参考答案 - 第五次作业
最简单的 一个方法, 就是将上述滤波之后的信号输入到一个 比较器电路, 调整比较器的阈值电压, 使得它的输出对应的方波信号的占空比不再是 1/3 或者 2/3, 那么信号中就会包括 300kHz 的频谱分量。根据信号的占空比, 可以知道它的谐波分量中不包含有三的倍数对应的谐波。根据条件(5)可以知道该谐波的功率为 1/2, 所以该信号的有效值为 1/2 , 信号的峰值为。根据条件(6),可以知道该信号为 奇实 信号,所以信号的周期为 4, 峰值为。信号为偶对称函数, 所以只包含有 cos 系数,原创 2025-03-23 21:59:28 · 245 阅读 · 0 评论 -
背景音乐的卡点
【代码】背景音乐的卡点。原创 2025-03-16 23:09:29 · 284 阅读 · 0 评论 -
如何使用Python绘制信号的波形?
标识出波形关键位置的幅度, 比如信号波形的极值、 与坐标轴的交点、周期信号的周期等等。可以在一张图上绘制多条曲线, 这个字符串给出了绘制信号曲线的种类, 比如这里就是使用红色的点线来绘制信号的波形。在信号与系统分析中, 还有一种冲击信号, 使用这种箭头来表示, 信号的强度一方面与箭头的高度成正比, 也可以在箭头旁边使用带有括号的数字表示冲击信号的强度。的形式来绘制序列的波形。即能够标识出信号的离散性, 同时也可以通过实心圆点来表示信号的幅度, 对于幅度的变化也能够比较明显的显示出来。原创 2025-03-16 21:29:12 · 1263 阅读 · 0 评论 -
信号与系统分析2025(春季)作业参考答案 - 第四次作业
下面使用 Python 中的 scipy.signal 中的 deconvolve 求解 x [ n ] x\left[ n \right]x[n]。这是两个因果序列进行卷积, 可以利用解卷积公式计算出。再根据卷积的位移特性和分配率, 可以得到最后的结果。得到 h[n] 的表达式, 下面仅仅给出结果。的重叠情况如下图所示, 所以。1、根据公式或者性质求解卷积。原创 2025-03-15 18:13:12 · 144 阅读 · 0 评论 -
根据卷积的微分性质来进行解卷积
可以看到, 如果将 t,u(t) 求导两次, 便可以的得到 delta(t)。根据相同求导, 最终便可以得到结果, 这个结果, 实际上, 就是待求信号f(t) 的表达式。第二小题, 可以看到, 对参与卷积的信号 进行求导, 可以得到两项, 其中后面一项为 delta(t) , 这样, 便产生了待求取的信号f(t)。前面一项, 实际上就是已知的卷积, 所以只要在最后求导的基础上, 加上原来的卷积结果, 便只剩下 f(t)了。利用卷积的微分特性, 可以方便求取参与卷积的信号表达式。原创 2025-03-13 23:39:38 · 542 阅读 · 0 评论 -
建立线性动态电路的微分方程
在电路中, 设置两个中间变量, 分别是L1和R1上的电流。电容上的电压是电流的积分。下面, 根据回路电压,可以列出第一个方程。第二个方程, 就是R2,C1上的电压之和等于电路的输出。下面消去其中中间变量 i1, i2, 便可以得到输入输出之间的微分方程。这样, 前面的微分方程,变成了算子方程。根据第三个方程, 将其带入上面两个方程, 消去变量 i1。根据电路网络的拓扑结构以及器件特性, 建立了带有两个中间变量的微分方程组。使用算子方法,帮助消除中间变量, 最终得到了电路的输入输出之间的微分方程。原创 2025-03-10 00:13:38 · 598 阅读 · 0 评论 -
对连续系统进行离散化:仿真系统的冲击响应
将离散时间系统的采样频率降低到100Hz, 此时,可以看到使用离散系统所得到的仿真结果与 impulse函数计算的结果出现了差异。这里需要说明的是, 程序首先计算系统的单位阶跃响应, 然后在通过求差分得到系统的单位冲击响应。对电路的微分方程进行离散化, 得到了对应的差分方程。通过迭代的方式获得了系统的输出。在采样频率比较高的情况下, 得到的结果与理论计算结果之间的误差很小。这样,便可以通过编程,计算在给定的输入信号下的电路输出。下面使用对微分方程进行离散化的方式获得电路输出信号的数值解。原创 2025-03-07 21:37:44 · 393 阅读 · 0 评论 -
仿真系统的冲激响应:scipy.signal
可以看到, 随着谐振电路中的串联电阻的增加, 输出信号震荡减小。当串联电阻为 2欧姆的时候, 输出信号中不再震荡, 当电阻等于5欧姆的时候, 输出信号进一步减小。可以使用四种系统模型, 其中第二种, 即系统函数的分子、分母系数最为简单, 可以直接通过描述系统的微分方程来得到。不同的电阻, 震荡周期都是相同, 通过波形可以看到, 周期大约为 2π, 这与系统对应的谐振频率是对应的。软件包中所需要的系统描述中的一种, 也就是系统函有理分式的分子和分母, 利用它, 便可以调用。原创 2025-03-07 11:34:42 · 683 阅读 · 0 评论 -
连续时间系统数值仿真
合并其中的同类项, 然后, 将其它所有相都移动到方程的右边, 这样, 方程便成为迭代方程。根据给定的参数, 可以得到对应的方程参数, 将这些参数带入方程, 最终得到用于数值仿真的迭代方程。系统给定的输入信号, 包括一个正弦信号。这是通过迭代方程得到正弦输入信号对应的系统输出, 输出也是正弦信号。下面,根据输入信号,通过前面的迭代方程, 计算出系统的相应信号。文对于第三次作业中实验第一题进行了仿真, 通过对连续时间系统微分方程离散化, 得到了系统输出的数值仿真结果。原创 2025-03-06 22:29:43 · 481 阅读 · 0 评论 -
信号与系统分析2025(春季)作业要求:第三次作业
请写出下面双音频序列对应的差分方程, 以及对应的起始条件。(2)将差分方程修改成迭代计算公式, 逐步根据输入信号计算出方程的数值解。代入方程右边之后便可以得到关于输出信号的微分方程, 求解之后便可以得到系统的单位冲激响应。指出响应中的自由响应、强迫响应、瞬态响应、稳态响应、零输入响应、零状态响应各个分量;如果系统起始为静止的,也就是零状态(满足松弛条件),试确定该系统的二阶差分方程;求解第一问:将完全响应分解成对应的零输入响应和零状态响应。分别指出系统的自由响应、强迫响应、瞬态相应、稳态响应;原创 2025-03-06 12:00:45 · 826 阅读 · 0 评论 -
信号与系统分析2025(春季)作业参考答案 - 第二次作业
试写出下面各图对应的系统输入输出之间的微分方程和差分方程。请大家注意本题中采用了不同的符号表示了积分、延迟,请大家注意辨识这些不同的表示方法。如果不可逆, 则给出两个不同的输入信号,他们所引起系统的输出是相同的。利用延迟算子, 化简上述差分方程。注意,上述电路最后还需要再经过一级的反向,才真正实现将原始信号进行恢复。的波形如下图所示, 请根据表达式绘制出对应自变量变化后的信号波形。根据下面表格描述系统的输入输出关系表达式, 分别判断系统的。中具有相同的结构,但是相关系数进行了改变,请大家注意区分。原创 2025-03-05 17:27:10 · 1163 阅读 · 0 评论 -
信号与系统分析2025(春季)作业参考答案 - 第一次作业
与任何信号相乘, 表示右边信号的形式。已知两个序列之间满足。二、写出信号的函数表达。三、判断信号的周期性。三、判断信号的周期性。原创 2025-03-04 17:19:16 · 999 阅读 · 0 评论 -
相似系统:演示动画
对于一个RLC谐振电路, 它也具有两个储能器件, 可以存储电能的电容与可以存储磁能的电感。根据元器件本身的特性, 以及电路网络结构, 利用基尔霍夫回路电压定律, 可以得到回路电流与输入电压之间的微分方程。对比质量弹簧力学系统以及RLC谐振电路系统数学模型, 它们都遵循向类似的微分方程。在外力的作用下, 质量块产生运动。系统中有两个储能元素, 一个是弹簧, 可以存储机械势能。一个是质量块, 它可以存储机械动能。这样, 可以得到质量块速度与外力之间的微分方程。相似系统在分析的时候, 遵从这相同的规律。原创 2025-02-26 22:26:06 · 317 阅读 · 0 评论 -
教学日历 2025年春季学期
智能车会利用“红外感应”设备来定位被困人员的位置,被困人员此时被视为一个辐射源,向周围发出红外辐射,这个辐射的强度会按距离的平方反比衰减。在模拟平台中,给予选手获取辐射剂量的接口和小车移动的接口,要求选手实现小车自动定位被困人员位置,前往该处并返回出发点。识别过程推荐使用简单的神经网络,会提供一些数据(小车拍到各个角度的各个标志物)作为训练集。此外,在两个被救人员处会放置两个不同的标志物,智能车需要根据。在地震之后,派出智能车前往危险的灾区对被困人员进行救助。2025年课程内容安排。智能车技术创新与实践。原创 2025-02-26 15:19:23 · 538 阅读 · 0 评论 -
信号与系统2025(春季)作业要求及参考答案汇总
01基础作业01基础作业02实验作业。原创 2025-02-26 15:14:20 · 1262 阅读 · 0 评论 -
不同相位的交流信号相乘
两个方波相乘, 得到的是一个二倍频的占空比可变的PWM波形。当两个信号相位完全相同的时候, 是一个正的常量, 同样, 如果两个信号相位恰好相反, 输出的信号是一个负的常量。两个正弦波相乘, 输出的是一个两倍频率的正弦波。随着相位不同, 可以看到输出的波形发生了较大的变化。当方波与正弦波相位相同, 输出的波形是正弦波的全波整流信号。两个三角波相乘, 输出的波形随着相位不同发生着变化。总体上, 频率还是两倍的频率, 只是波形不在完全是一个正弦波,或者三角波了。文展示了不同相位的波形相乘的结果。原创 2025-02-24 01:01:35 · 588 阅读 · 0 评论 -
信号与系统分析2025(春季)作业要求:第一次作业
根据电路原理分析方法可以知道, 电感电阻回路的电流呈现指数衰减特性, 具体的表达式如下, 在根据输出电压等于回路电流乘以R1,得到输出电压信号表达式,并绘制出波形。,可以任选其中一个进行实验,来认知关于信号表达方式与信息传递之间的关系,并对MATLAB,PYTHON中用于信号处理的软件包进行初步的了解。函数获得该音频信号的 时频联合分布图像,根据其中每个音频信号对应的频路组合,识别电话音乐中对应的电话号码。在绘制信号波形的时候, 请按照实际的物理信号标注好波形坐标的名称、单位以及一些关键点的信息。原创 2025-02-20 13:24:37 · 1883 阅读 · 0 评论 -
测试AI创作的不同风格的讲故事能力
在这里对比了AI创作, 看一下相应输出的文稿特点。给出的提问都是一样的, 就是讲述关于高斯的三个有趣故事。有一次,他在聚会上被一个不懂数学的土豪问: “高斯先生,你整天研究数学, 这玩意儿到底有啥用啊?很快, Kimi输出了高斯幼童时期、学生时期以及成年时期的三个生活轶事。全场瞬间爆笑,土豪一脸懵逼, 而高斯则在众人羡慕的目光中, 优雅地端起酒杯, 继续享受他的数学人生。Kimi将前面的三个故事重新书写, 语言风格骤变, 至少我觉得有趣多了。它愉快风趣讲述了高斯的不同时期的故事。原创 2025-02-16 22:02:28 · 408 阅读 · 0 评论 -
利用AI 创作短视频的文本:对比 Deepseek、Kimi
19岁那年,他运用了“复数”和“数论”这两把“金钥匙”,成功打开了正十七边形的大门,还画出了具体的步骤。然而,高斯在19岁时,运用复数理论和数论知识,成功证明了用尺规作图可以画出正十七边形,并给出了具体的作图步骤。高斯长大后,成了数学界的超级巨星。有一次,他在聚会上被一个不懂数学的土豪问:“高斯先生,你整天研究数学,这玩意儿到底有啥用啊?全场瞬间爆笑,土豪一脸懵逼,而高斯则在众人羡慕的目光中,优雅地端起酒杯,继续享受他的数学人生。高斯的故事,不仅让人佩服他的数学天赋,更让人感受到数学的有趣和魅力。原创 2025-02-16 19:42:54 · 940 阅读 · 0 评论 -
Apple原理设计构图
01模版绘制01模版绘制。原创 2025-02-16 18:01:25 · 266 阅读 · 0 评论 -
人工神经网络(2024年秋季): 第五次作业
对CIFAR-10 数据集的分类是机器学习中一个公开的基准测试问题,其任务是对一组大小为32x32的RGB图像进行分类,这些图像涵盖了10个类别:飞机, 汽车, 鸟, 猫, 鹿,狗, 青蛙, 马, 船以及卡车。在数据集合中,标号小于400的样本为单个物品的数据,标号大于等于400的样本为多个物品重叠后的样品。在图片集合中,同一物品在同一方位下,不同的角度拍摄的图片在数据集合中是顺序排列的。数据命令中这里的参数’1’是对应第一个图片,可以将其修改成其它1~10000之间的数字来显示其它的图片。原创 2024-12-09 12:02:36 · 1020 阅读 · 0 评论 -
人工神经网络(2024年秋季): 第二次作业
◎ 说明: 成作业可以使用你所熟悉的编程语言和平台,比如 C,C++、MATLAB、Python等。作业链接。 下面是分层前馈网络的示意图,分层前馈网络的随机梯度下降算法(BP算法)中,第 nnn 层的权系数 wijnw_{ij}^nwijn 的调整公式可以表述为:Δwijn=η(∑k=1mnδkn+1wjkn+1)y′n⋅yin−1\Delta w_{ij}^n = \eta \left( {\sum\limits_{k = 1}^{m_n } {\delta _原创 2024-10-14 09:30:34 · 1688 阅读 · 0 评论 -
数字示波器的尴尬 | 三个诡异的情况
第三个诡异的现象是波形的长相太奇怪了。刚才实际观察到的奇怪波形似乎说明现在的示波器的水平时间轴反向了。大家自己观察现在泽哥示波器的波形, 其中有三点会令人感到奇怪。通常情况下, 示波器在显示信号的时候, 会对信号的上升沿或者下降沿进行同步。文展示了数字示波器观察信号中有可能因为欠采样所产生的诡异波形。有的时候只会出现某几种现象, 也有的时候会出现波形混乱的现象。但是在数字示波器观察到的信号中存在着一颗有趣的现象。那么为什么数字示波器在观察信号的时候会出现这么奇怪的现象呢?波形, 实际上是示波器通过。原创 2024-09-08 21:38:45 · 990 阅读 · 0 评论