最近看到介绍复合函数连续性的章节,开篇就提出了一个复合函数不连续的例子,如下
f ( u ) = { 0 u = 0 1 u ≠ 0 f(u)=\begin{cases} 0& u = 0\\ 1& u \neq 0 \end{cases} f(u)={
01u=0u=0
g ( x ) = x sin 1 x g(x)=x \sin \frac{1}{x} g(x)=xsinx1
容易验证
lim u → 0 f ( u ) = 1 \lim_{u \to 0}f(u)=1 u→0limf(u)=1以及
lim x → 0 g ( x ) = 0 \lim_{x \to 0}g(x)=0 x→0limg(x)=0
但是复合函数
f