复合函数连续的反例及证明

本文探讨了一个复合函数不连续的示例,其中f(u)在u=0处有一个可去间断点,而g(x)在x=0处极限为0。通过严谨的ε-δ证明,展示了g(x)在x接近0时的极限行为。然而,尽管f(u)和g(x)在特定点有极限,但f(g(x))在x=0处的极限不存在,因为可以找到两个不同的数列使得复合函数的极限不同,违反了海涅定理。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

最近看到介绍复合函数连续性的章节,开篇就提出了一个复合函数不连续的例子,如下

f ( u ) = { 0 u = 0 1 u ≠ 0 f(u)=\begin{cases} 0& u = 0\\ 1& u \neq 0 \end{cases} f(u)={ 01u=0u=0
g ( x ) = x sin ⁡ 1 x g(x)=x \sin \frac{1}{x} g(x)=xsinx1
容易验证
lim ⁡ u → 0 f ( u ) = 1 \lim_{u \to 0}f(u)=1 u0limf(u)=1以及
lim ⁡ x → 0 g ( x ) = 0 \lim_{x \to 0}g(x)=0 x0limg(x)=0
但是复合函数
f

评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值