陶哲轩实分析-第13章 度量空间上的连续函数

版权声明:本文为博主原创文章,未经博主允许不得转载。 https://blog.csdn.net/buck84/article/details/51628714

13.1 连续函数

习题
13.1.1
完全类似命题9.4.7证明

13.1.2
根据定理13.1.4,(a)<=>(b)
a->c
假设yV,那么存在f(x0)=y。对于任意ε,存在δ,根据13.1.4(c),只要xB(x0,δ),就有f(x)B(y,ε),所以每个x都是内点,所以f1(V)是开集。
c->d
F是闭集,那么YF是开集,那么f1(YF)是开集,那么f1(Y)f1(YF)=f1(F)是闭集。
d->c类似
c->b(看了数学分析原理Theorem4.8)
如果对于任意Y中开集V满足f1(V)在X中开,那么对于任意pX,ε,令V=B(f(p),ε)为开集,那么f1(V)为开集,所以存在δ满足B(p,δ)f1(V),那么如果xB(p,δ)f(x)V,这就是连续性的定义,我们证明了f在p点连续,而p是任意点。

13.1.3
有2种证明方法:
1.用连续性定义
2.用13.1.5(c)

13.1.4
(a)f 任意不连续函数, g(x)=0
(b)f符号函数,g(x)=0
(c)
f符号函数
g(x)=
3 x<3
0 x>=3

推论13.1.7的逆命题不成立

13.1.5E中任意收敛序列,对应的函数值序列都收敛。

13.1.6 f|E=fτEX

13.1.7 f连续 <=>
X中收敛序列收敛到E中对应函数值<=>
g连续

13.2 连续性与成绩空间

习题
13.2.1相当于12.1.18中n=2

13.2.2 结合13.1.5和定理6.1.19

13.2.3|f|(x):=|f(x)|=max(f(x),f(x))

13.2.4
π1连续:令f(x)=x,g(y)=0。π2类似。
g1(x,y):=f(x)=fπ1(x,y),所以连续。

13.2.5
如果ij都不为0,那么根据引理13.2.2,乘法函数连续
如果i=j=0,那么常数值连续
如果i或j为0,比如i=0,j!=0,那么g(x,y)=cxi=f(x),根据习题13.2.4,连续
而连续函数的和是连续的。

13.2.6
考察任意点f(x0)=y(m),g(x0)=y(n)
根据连续定义,对于任意ε,存在δ1|xx0|δ1|f(x)f(x0)|ε/2,同理存在δ2|xx0|δ1|g(x)g(x0)|ε/2,那么只要|xx0|min(δ1,δ2),则|fg(x)fg(x0)|ε(三角不等式),所以连续。

13.2.7
用引理13.2.2,可以类似习题13.2.5证明。
提示中归纳法如何证明呢?

13.2.8
a d((x,x),(x,x))=dX(x,x)+dY(y,y)=0
b d((x,y),(x,y))=dX(x,x)+dY(y,y)>0如果不相等
c d((x,y),(x,y))=dX(x,x)+dY(y,y)=d((x,y),(x,y))
d d((x,y),(x",y"))=dX(x,x")+dY(y,y")dX(x,x)+dX(x,x")+dY(y,y)+dY(y,y")=d((x,y),(x,y))+d((x,y),(x",y"))

类似13.2.1的结论:
设f:X->Y,g:X->Z,并设fg:X>Y×Z,那么f和g都连续当且仅当fg连续。

13.2.9

13.2.10
因为f连续,根据12.1.18,所以只要|xx0|δ|yy0|δ,就有|f(x,y)f(x0,y0)|ϵ,固定x,那么显然|xx|=0δ,所以yf(x,y)连续,xf(x,y)同样。

13.2.11
考虑y=x和y=2x,f分别等于1/2和2/5。

13.3

这一节很多证明放习题里,如果第一次看书,应该还是很有难度的。
习题
13.3.1 数学分析原理4.14

13.3.2
命题9.6.7的证明最后如果有紧致性,那么可以不用选择公理,直接用紧致性的属性:收敛序列必有收敛点。
其实数学分析原理4.16的证明更简洁。

13.3.3 一致连续满足连续的定义。
反例:f(x)=1/xx(0,1]

13.3.4 根据定义证明,以前有过很多类似的证明了

13.3.5 根据命题12.1.18

13.3.6
对于x+y,由于x和y是一致连续的,所以对于任意ε,任意点(x0,y0),只要|xx0|ε/2|yy0|ε/2,就有|x+yx0y0|ε
x-y类似
对于xy,|xyx0y0|的大小不仅依赖x,x0的接近程度,还有x和y有关,不失一般性,考虑x0,y0>0,xy从上方接近x0,y0,那么|xyx0y0|=(xx0)y+x0(yy0),显然,这个值跟x和y都有关系。
x一致连续
但是x2不一致连续
max min一致连续
f/g不一致连续,因为x一致连续,但是1/x不一致连续

13.4 连续性与连通性

习题
13.4.1 任取E中一个元素xE,那么x是开的,Ex也是开的,并且二者的并等于E,所以E是不连通的

13.4.2
连续=>常值
反证法,如果f不是常值,那么必定存在至少两个元素,根据习题13.4.1,f(X)是不连通的,根据定理13.4.6,f必定不连续。

常值=>连续
常值函数是连续的

13.4.3
b=>c
令a=inf(X),b=sup(X),要证明X是区间,只要证明对于任意a<x<bxX,根据(b),x[x(xa/2),x+(bx)/2]X

证明完成。

c=>b
X是区间,那么如果a=inf(X),b=sup(X),则X=[or( a,b ]or),那么只要x,yX且x < y,则[x,y]X

13.4.4
反证法,如果f(E)不连通,那么必定存在UV=f(E),那么根据13.1.5(c),f1(U)f1(V)=X,而且$f^{-1}(U), f^{-

1}(V)$不想交,与X连通矛盾。

13.4.5
不妨设f(a)yf(b),令c=sup{x:f(a)\le f(x)\le y},由于[f(a),y]是闭集,根据13.1.5(c),集合的逆集合也是闭集,那么sup存在并且属于[a,b],所以c[a,b]E

13.4.6
反证法,如果Eα不连通,那么必定存在不想交的开集UV=Eα,令I1={αI:EαU}I2={αI:EαV},那么I1I2=ϕαI1I2Eα=ϕ,矛盾。

13.4.7
根据定理13.4.6,[0,1]到E的连续函数f,那么E是连通的。
连通但是不路连通,怎么证明

13.4.8
反证法,如果E连通,E¯¯¯不连通,那么E¯¯¯=(EU)V,U V都为边界点集合,但是这样得到的V不是开的,矛盾。
逆命题不成立,如(2,3)(3,4)

13.4.9
自反 单点集是连通的
对称 如果有一个连通集合包含x和y,那么也包含y和x
传递 有一个连通集合U包含xy,连通集合V包含yz,那么UV非空,那么UV是连通的,包含xz

等价类是闭的和连通的
如果等价类不是闭的,那么包含某个边界点z,和x不连通,但是根据习题13.4.8,如果E是连通的,闭包也是连通的,所以不存在这样的边界点,所以x等价类是闭的并且连通的

13.4.10
M:=supxXf(x),m:=infxXf(x),那么对于任意myM,存在cX,满足f(c)=y

13.5 拓扑空间

今年看分析,明年看代数,后年看拓扑
习题
13.5.1
证明是拓扑空间
T:={ϕ,X}包含空集和X
这两个元素组成集合的有限交还是只有这两个元素
这两个元素组成集合的并还是只有这两个元素
所以是拓扑空间。

证明平凡拓扑不能由在X上定义一个度量来得到
由于X是开集并且非空,考虑xX,那么B(x,r)非空,如果B(x,r/2)=B(x,r/2),那么X只有x一个元素,这与X多余一个元素矛盾,所以B(x,r/2)B(x,r/2),所以B(x,r/2)X,应该是开集,与T:={ϕ,X}矛盾。

证明这个拓扑空间是紧致的
反证法,假设不紧致,那么存在开覆盖满足X=XnX1不能覆盖X且非空,并且X1X非空且是开集且是X的子集,那么也是开集,应该包含在拓扑空间的开集中,矛盾。

连通性
反证法,假设不连通,那么存在开集UV=X,那么UV也应该包含在拓扑空间的开集中,矛盾。

13.5.2
对于13.5.4中x的任意邻域V,在12.1.14中就是B(x,r),根据12.1.14,存在N,只要nN,就有d(x(n),x)r,也就是x(n)B(x,r),反之亦然。

13.5.3
只需要把邻域V与球B(x0,r)对应即可。

13.5.4
对于任意度量空间X,x,yX,c=d(x,y),那么B(x,c/2)B(y,c/2)=ϕ,所以是Hausdorff空间。

而对于平凡拓扑,任一点x,yX,只有开集X满足x,yX,不存在VW满足条件。

非Hausdoeff空间:考虑T:={(x,x):x>0,xR},那么序列21/n同时收敛到2和-2。

13.5.5
证明是拓扑空间
空集和X是开子集
开子集的有限交是开集an<y<bn=max(an)<y<min(bn)
开子集的任意并是开子集

证明是Hausdorff空间
不妨设x<y,那么存在ax<x<bxay<y<by,如果bx<ay,证明完成,如果bx=y,同样成立。
如果bx>y,可以重新设置bx=yay的讨论类似。

在实直线R上的序拓扑与标准拓扑是一致的,因为开区间是一致的

(xn)收敛到,那么对于任意邻域(r,),需要存在N,如果n>Nxn>r,也就是limninfxn=,反之亦然。

13.5.6
证明是拓扑空间
包含空集
空集是有限的,而X=Xϕ
开集的有限交是开集XE1XE2=X(E1E2)
开集的任意并是开集XE1XE2=X(E1E2),而Ei仍然是有限的。

证明是Hausdorff拓扑
感觉不是呀???

证明紧致
考虑任意开覆盖族,取任意开集Y,由于Y的补集是有限的,不妨设有n个元素,那么至多再需要n个集合即可完全覆盖X,证明完成。

证明连通
反证法,假设不连通,那么存在开集VW满足X=VW,那么W=XV,那么W应该是有限的,不是开集,矛盾,证明完成。

倒数第二个证明
反证法,假设Vn=x,令Vn=XEn,那么XVn=Xx=En,而可数个可数集的并是可数的,与X是不可数的矛盾

证明不能定义度量
根据提示,如果是度量空间的话,这个集合的并应该等于{x}

13.5.7
证明是拓扑与习题13.5.6类似

感觉不是Hausdorff拓扑呀,假设xVyW并且VW=ϕ,那么yEvxEw,那么(VW)=X(EvEw)不应该为空呀??

连通的类似上面证明

不紧致也容易理解,令xn为X中序列,那么Xn=Xxn为X的开覆盖,没有有限开覆盖能覆盖X

不能从度量空间导出,没有提示,不会做

13.5.8
紧致拓扑空间的证明类似习题13.5.6

在X中并非每个序列都有收敛的子序列?感觉必定收敛啊,只是可能收敛点不止1个
比如任意序列an,对于任意不属于序列的b,必然收敛到b,因为对于包含b的任意开集,补集是有限的,那么只有有限个元素不属于这个开集,那么an中存在N,如果n>N,则an属于这个开集

展开阅读全文

没有更多推荐了,返回首页