【YOLOv5】 使用教程:从环境配置到模型推理

        YOLOv5 是一个流行的目标检测模型,它在精度和速度方面都表现优异。本文将为你提供一个全面的指南,从环境配置到如何训练和使用 YOLOv5 进行目标检测。

一. 环境设置

在开始使用 YOLOv5 之前,你需要配置好 Python 环境,并安装必要的依赖项。

1.1 安装 Python 和虚拟环境

本文就不概述Python运行环境相关的配置了,咱们直接进入正文

1.2 安装 YOLOv5 和依赖项

使用 pip 安装 YOLOv5 所需的依赖项。首先,克隆 YOLOv5 仓库并进入目录:

仓库链接:GitHub - ultralytics/yolov5: YOLOv5 🚀 in PyTorch > ONNX > CoreML > TFLite
可以通过GIT克隆或者直接下载代码

下载完成,进入文件目录,安装依赖项:

pip install -U -r requirements.txt

1.3 准备相关文件进行训练

在yolov5文件夹下新建一个文件夹,这里取名为VOCData

进入后新建两个文件夹 Annotations 和 images

      images:用于存放要标注的图片(jpg格式)

      Annotations :用于存放标注图片后产生的内容

二. 数据准备

2.1 数据集格式

YOLOv5 支持多种数据集格式,但通常使用 VOC(XML格式) 或 YOLO(txt格式) 格式。数据集应包括图片和标签文件。标签文件通常是 .txt 格式,每行包含一个目标的类标签和边界框坐标。

此处我使用的是VOC格式,因为直接使用YOLO格式有个小小的坑,使用VOC格式可以直接避免这个问题

此时我们就需要用到labelImage了

2.2 安装labellmg

下载labelImg:

pip install labelImg

安装完成,直接运行命令启动

labelImg

主界面

页面介绍:

选择要标注的图片,框选标注区域,标注图片标签

快捷键:

W:创建区域框

A:上一张图片

D:下一站图片

2.2 标注的文件格式:

三. 划分数据集以及配置文件的修改

3.1 在VOCData目录下创建程序 split_train_val.py 并运行,内容不用修改

# coding:utf-8
 
import os
import random
import argparse
 
parser = argparse.ArgumentParser()
#xml文件的地址,根据自己的数据进行修改 xml一般存放在Annotations下
parser.add_argument('--xml_path', default='Annotations', type=str, help='input xml label path')
#数据集的划分,地址选择自己数据下的ImageSets/Main
parser.add_argument('--txt_path', default='ImageSets/Main', type=str, help='output txt label path')
opt = parser.parse_args()
 
trainval_percent = 1.0  # 训练集和验证集所占比例。 这里没有划分测试集
train_percent = 0.9     # 训练集所占比例,可自己进行调整
xmlfilepath = opt.xml_path
txtsavepath = opt.txt_path
total_xml = os.listdir(xmlfilepath)
if not os.path.exists(txtsavepath):
    os.makedirs(txtsavepath)
 
num = len(total_xml)
list_index = range(num)
tv = int(num * trainval_percent)
tr = int(tv * train_percent)
trainval = random.sample(list_index, tv)
train = random.sample(trainval, tr)
 
file_trainval = open(txtsavepath + '/trainval.txt', 'w')
file_test = open(txtsavepath + '/test.txt', 'w')
file_train = open(txtsavepath + '/train.txt', 'w')
file_val = open(txtsavepath + '/val.txt', 'w')
 
for i in list_index:
    name = total_xml[i][:-4] + '\n'
    if i in trainval:
        file_trainval.write(name)
        if i in train:
            file_train.write(name)
        else:
            file_val.write(name)
    else:
        file_test.write(name)
 
file_trainval.close()
file_train.close()
file_val.close()
file_test.close()

运行完后会在VOCData\ImagesSets\Main下生成 测试集、训练集、训练验证集和验证集

3.2 将xml格式转为yolo_txt格式

在VOCData目录下创建程序 text_to_yolo.py 并运行

开头classes部分改成你自己的类别,我这里是识别0-9个类别

文件路径切换成你自己项目文件的路径

# -*- coding: utf-8 -*-
import xml.etree.ElementTree as ET
import os
from os import getcwd

sets = ['train', 'val', 'test']
classes = ["0", "1", "2", "3", "4", "5", "6", "7", "8", "9"]  # 改成自己的类别
abs_path = os.getcwd()
print(abs_path)


def convert(size, box):
    dw = 1. / (size[0])
    dh = 1. / (size[1])
    x = (box[0] + box[1]) / 2.0 - 1
    y = (box[2] + box[3]) / 2.0 - 1
    w = box[1] - box[0]
    h = box[3] - box[2]
    x = x * dw
    w = w * dw
    y = y * dh
    h = h * dh
    return x, y, w, h


def convert_annotation(image_id):
    in_file = open('D:\project\YOLO\Annoations\%s.xml' % (image_id), encoding='UTF-8')
    out_file = open('D:/project/YOLO/yolov5/VOCData/labels/%s.txt' % (image_id), 'w')
    tree = ET.parse(in_file)
    root = tree.getroot()
    size = root.find('size')
    w = int(size.find('width').text)
    h = int(size.find('height').text)
    for obj in root.iter('object'):
        difficult = obj.find('difficult').text
        # difficult = obj.find('Difficult').text
        cls = obj.find('name').text
        if cls not in classes or int(difficult) == 1:
            continue
        cls_id = classes.index(cls)
        xmlbox = obj.find('bndbox')
        b = (float(xmlbox.find('xmin').text), float(xmlbox.find('xmax').text), float(xmlbox.find('ymin').text),
             float(xmlbox.find('ymax').text))
        b1, b2, b3, b4 = b
        # 标注越界修正
        if b2 > w:
            b2 = w
        if b4 > h:
            b4 = h
        b = (b1, b2, b3, b4)
        bb = convert((w, h), b)
        out_file.write(str(cls_id) + " " + " ".join([str(a) for a in bb]) + '\n')


wd = getcwd()
for image_set in sets:
    if not os.path.exists('D:/project/YOLO/yolov5/VOCData/labels/'):
        os.makedirs('D:/project/YOLO/yolov5/VOCData/labels/')
    image_ids = open(
        'D:/project/YOLO/yolov5/VOCData/ImageSets/Main/%s.txt' % (image_set)).read().strip().split()

    if not os.path.exists('D:/project/YOLO/yolov5/VOCData/dataSet_path/'):
        os.makedirs('D:/project/YOLO/yolov5/VOCData/dataSet_path/')

    list_file = open('dataSet_path/%s.txt' % (image_set), 'w')
    for image_id in image_ids:
        list_file.write('D:/project/YOLO/yolov5/VOCData/images/%s.PNG\n' % (image_id))
        convert_annotation(image_id)
    list_file.close()

运行完后会生成如下 labels 文件夹和 dataSet_path 文件夹

其中 labels 中为不同图像的标注文件。每个图像对应一个txt文件,文件每一行为一个目标的信息,包括class, x_center, y_center, width, height格式,这种即为 yolo_txt格式。

dataSet_path文件夹包含三个数据集的txt文件,train.txt等txt文件为划分后图像所在位置的绝对路径,如train.txt就含有所有训练集

3.3 配置文件

在 yolov5 目录下的 data 文件夹下 新建一个 myvoc.yaml文件(可以自定义命名),用记事本打开。

内容是:

训练集以及验证集(train.txt和val.txt)的路径(可以改为相对路径

以及 目标的类别数目和类别名称。

train: D:\project\YOLO\yolov5\VOCData\dataSet_path\train.txt
val: D:\project\YOLO\yolov5\VOCData\dataSet_path\val.txt

# Classes
nc: 10
names: [ "0","1","2","3","4","5","6","7","8","9" ]

四. 模型训练

在yoloV5文件夹新建weights目录,接着输入如下训练命令:

python train.py --weights weights/yolov5s.pt --cfg models/yolov5s_num.yaml --data data/coco_num.yaml --epochs 200  --batch-size 6 --multi-scale --device 0 --workers 6

4.1 参数解释:

 –weights weights/yolov5s.pt :yolov5模型放置目录

–epoch 200 :训练200次

–batch-size 6:训练6张图片后进行权重更新

–device 0:使用GPU训练。//这里device cpu为cpu训练

训练好的模型会被保存在 yolov5 目录下的 runs/train/expxx/weights下。

五. 效果展示

yolov5主目录下找到detect.py文件,打开该文件

主要是weights和source处修改: 

以打开笔记本摄像头为例子:

加载训练器:找到这行并修改

 parser.add_argument("--weights", nargs="+", type=str, default="weights/best.pt", help="model path or triton URL")

加载摄像头进行识别:(图片视频default修改路径就行如'test1.jpg',摄像头default为0)

parser.add_argument('--source', type=str, default=0, help='source')  # file/dir/URL/glob/screen/0(webcam)

运行detect.py

效果展示:

评论 5
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

乃真卧龙凤雏

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值