机器学习
文章平均质量分 74
老炉传说
追求美的事物
展开
-
logistic回归的参数梯度更新方法的个人理解
logistic回归参数更新看了几篇博文,感觉理解不透彻,所以自己写一下,希望能有更深的理解。logistic回归输入是一个线性函数。是标签onehot编码的三个值,和正好为1。采用onehot编码,长度为3,如果类别编号为1,则其编码为。,为了简单理解,考虑batchsize为1的情况。的向量,显然\boldsymbol{b}也是一个。我们采用oneHot编码为一个。,对应上图的话,就是。原创 2023-03-10 17:00:09 · 644 阅读 · 0 评论 -
PRML笔记4-绪论中推断和决策小结
使用后验概率进行最优的分类;亦或是同时解决推断和决策问题,简单的学习一个函数。使用训练数据学习后验概率。直接映射为决策,这是函数。有三种不同的方法来解决。原创 2023-02-25 20:01:11 · 634 阅读 · 0 评论 -
PRML笔记3-绪论中最小化错误分类率的理解
在分类任务中我们希望尽可能减少错误的分类,例如我们有一些病人的临床数据,希望通过这些临床数据对患者的诊断提供帮助,比如根据临床数据病人的疾病类型。,这种区域就是决策区域,每种疾病对应一个决策区域,决策区域的边界叫做决策边界或者决策面。发现错误部分的面积主要为红色和橙色区域,仔细观察发现绿线的移动并不影响橙色部分的面积,仅对红色部分面积有影响,显然最小错误分类的。表示BMI指数,现在有一组BMI和血压的数据,红线以上的血压为高血压。表示患者的临床数据,显然为了有最小的错误分类,对。如果把病人的临床数据。原创 2023-02-25 10:52:50 · 481 阅读 · 0 评论 -
PRML笔记2-关于回归参数w的先验的理解
加入先验,考虑最简单的假设,也就是。现在成了,我们最大化后验概率求。服从均值为0,协方差矩阵为。我们现在要找的是最可能的。我们一步一步看一下给定。独立,因此上式似然函数。,变成了最大化似然函数。原创 2023-02-20 19:35:28 · 388 阅读 · 0 评论 -
PRML笔记1-绪论部分多项式回归中的概率论
可能有人说,我们直接写程序给它设定规则就可以了,然而,由于总有我们考虑不到的手写体,每当发现新的程序识别不了的字符,我们必须增加新的规则,这就导致了规则的激增。比如下面的两个2,我们很难通过人工设定规则。或者这么理解,我们希望有一个映射,可以将输入的图像,映射成对应的数字。人工方法设定的映射函数可能会非常庞大,因此我们需要探索更省力、效率更高的方法,那就是机器学习。组成的集合叫做训练集(training set),用来调节映射的参数。每个图像对应的数字都是已知的,使用目标向量(target vector)原创 2023-02-07 12:12:09 · 520 阅读 · 0 评论 -
一个在线卷积池化计算器-推荐不会计算的同学
很多刚入门的身边的小伙伴不会计算卷积和池化,于是为了方便大家计算顺便根据卷积池化计算公式设计了一个在线计算器卷积池化计算器地址如果你很懒的话,可以用这个计算。原创 2021-03-19 10:11:08 · 5646 阅读 · 2 评论