第一章 因果效应的定义
- 1.1 个体因果效应:介绍了个体因果效应的概念和定义,即在给定某个干预条件下,个体结果的变化量。
- 1.2 平均因果效应:介绍了平均因果效应的概念和定义,即在给定某个干预条件下,总体结果的变化量。
- 1.3 因果效应的度量:介绍了因果效应的度量方法,包括风险差、风险比、比例差、比例比等。
- 1.4 随机变异:介绍了随机变异的概念和作用,以及如何通过随机化来减少随机变异的影响。
- 1.5 因果关系与相关关系:介绍了因果关系和相关关系的区别,以及如何通过因果推断来确定因果关系。
第二章 随机实验
-
随机分配(Randomization):随机分配是指将研究对象随机分配到不同的处理组和对照组中,以消除处理组和对照组之间的混杂因素,从而减少因混杂因素引起的偏差。
-
条件随机分配(Conditional randomization):条件随机分配是指在随机分配的基础上,根据某些特定的条件对研究对象进行分组,以进一步减少混杂因素的影响。
-
标准化(Standardization):标准化是指通过调整不同组之间的混杂因素,使它们在某些特定方面具有相同的分布,从而消除混杂因素的影响。
-
逆概率加权(Inverse probability weighting):逆概率加权是一种处理非随机分配的方法,它通过对每个研究对象进行加权,使得处理组和对照组之间的混杂因素得到平衡,从而减少因混杂因素引起的偏差。
第三章 观察性研究
这部分主要介绍了观察性研究的可辨识性条件和因果推断的基本概念。具体来说,该部分首先介绍了观察性研究的可辨识性条件,包括可交换性、可行性和一致性等。然后,该部分详细介绍了可交换性的概念和作用,即在条件随机化试验中,处理组和对照组之间的可交换性可以保证因果效应的可辨识性。接着,该部分介绍了正性和一致性的概念和作用,以及如何定义反事实结果和将反事实结果与观察数据联系起来。最后,该部分介绍了目标试验的概念和作用,即通过模拟一个理想的随机化试验来评估观察性研究的结果。
- 观察性研究的可辨识性条件:包括可交换性、可行性和一致性等。
- 可交换性的概念和作用:在条件随机化试验中,处理组和对照组之间的可交换性可以保证因果效应的可辨识性。
- 正性和一致性的概念和作用:正性是指所有个体都有一定的概率接受处理,一致性是指处理的效应在不同的个体之间是相同的。
- 反事实结果的定义:指在某个个体接受处理的情况下,该个体的结果是什么。
- 将反事实结果与观察数据联系起来:需要通过一些方法来估计反事实结果,例如匹配、倾向得分匹配等。
- 目标试验的概念和作用:通过模拟一个理想的随机化试验来评估观察性研究的结果,从而减少因混杂变量而导致的偏差。
第四章 效应修饰
- 4.1 潜在结果框架:潜在结果框架是一种用于描述因果效应的方法,它假设每个个体都有一个潜在的结果,这个结果会因为接受或未接受某种干预而发生改变。
- 4.2 因果效应和反事实:因果效应是指某种干预对结果的影响,而反事实是指如果某个个体接受了不同的干预,她的结果会是什么。
- 4.3 随机化和潜在结果:随机化是一种将个体随机分配到不同干预组的方法,它可以帮助消除干预组之间的混杂因素,从而使得潜在结果框架成立。
- 4.4 忽略性和可交换性:忽略性和可交换性是指在一些条件下,干预组和对照组之间的差异可以被忽略或视为相同的情况。
- 4.5 估计量和估计器:估计量是指用于描述因果效应的量,而估计器是指用于从数据中估计估计量的方法。
- 4.6 效应修正和调整方法:效应修正是指不同个体之间因果效应的差异,而调整方法是指通过控制混杂因素来消除干预组和对照组之间的差异。
第五章 交互作用
- 5.1 交互作用需要联合干预:介绍了交互作用的概念和作用,即在两个或多个因素共同作用时,干预一个因素的效果是否取决于另一个因素的水平。
- 5.2 识别交互作用:介绍了如何通过一些方法来识别交互作用,包括图形法、统计检验法和建模法等。
- 5.3 反事实响应类型和交互作用:介绍了如何通过反事实响应类型来描述交互作用的不同形式。
- 5.4 充分原因:介绍了充分原因的概念和作用,即在多个因素共同作用时,如何确定哪些因素是充分原因。
- 5.5 充分原因交互作用:介绍了充分原因交互作用的概念和作用,即在多个因素共同作用时,如何确定哪些因素是充分原因,并且它们之间是否存在交互作用。
- 5.6 反事实或充分组成原因?:介绍了反事实和充分组成原因两种方法在描述交互作用时的不同作用和优缺点。
第六章 因果效应的图形表示
- 6.1 因果图:介绍了因果图的概念和作用,即如何通过图形的方式来表示因果关系。
- 6.2 因果图和边缘独立性:介绍了边缘独立性的概念和作用,即如何通过因果图来判断两个变量是否边缘独立。
- 6.3 因果图和条件独立性:介绍了条件独立性的概念和作用,即如何通过因果图来判断两个变量是否条件独立。
- 6.4 正性和一致性在因果图中的表示:介绍了如何在因果图中表示正性和一致性这两个因果推断的基本假设。
- 6.5 偏倚的结构分类:介绍了偏倚的概念和作用,以及如何通过因果图来分类和识别不同类型的偏倚。
- 6.6 效应修饰的结构:介绍了效应修饰的概念和作用,以及如何通过因果图来表示和识别效应修饰的结构。
第七章 混淆
- 7.1 混淆的结构:介绍了混淆的概念和作用,即在因果推断中如何识别和处理混淆。
- 7.2 混淆和可交换性:介绍了可交换性的概念和作用,以及如何通过可交换性来判断是否存在混淆。
- 7.3 混淆和后门准则:介绍了后门准则的概念和作用,以及如何通过后门准则来判断需要调整哪些变量来处理混淆。
- 7.4 混淆和混淆因素:介绍了混淆因素的概念和作用,以及如何通过混淆因素来识别和处理混淆。
- 7.5 单世界干预图:介绍了单世界干预图的概念和作用,以及如何通过单世界干预图来识别和处理混淆。
- 7.6 混淆调整:介绍了混淆调整的概念和作用,以及如何通过调整混淆因素来处理混淆。
第八章 选择偏倚
- 8.1 选择偏倚的结构:介绍选择偏倚的概念和结构,以及如何用因果图表示选择偏倚。
- 8.2 选择偏倚的例子:介绍选择偏倚的几个例子,以帮助读者更好地理解选择偏倚。
- 8.3 选择偏倚和混淆:讨论选择偏倚和混淆之间的关系,以及如何区分它们。
- 8.4 选择偏倚和截尾:介绍选择偏倚和截尾之间的关系,以及如何处理截尾引起的选择偏倚。
- 8.5 如何调整选择偏倚:介绍如何使用因果图和其他方法来调整选择偏倚。
- 8.6 无偏选择:介绍如何进行无偏选择,以避免选择偏倚的影响。
第九章 测量偏倚
- 9.1 测量误差:介绍测量误差的概念和影响,以及如何处理测量误差。
- 9.2 测量误差的结构:讨论测量误差的结构和如何用因果图表示测量误差。
- 9.3 测量错误的混淆因素和碰撞器:介绍测量误差对混淆因素和碰撞器的影响。
- 9.4 没有测量误差的因果图?:讨论是否可以在因果图中忽略测量误差。
- 9.5 许多提出的因果图实际上是非因果的:介绍许多提出的因果图实际上是非因果的,以及如何识别和避免这些问题。
- 9.6 许多提出的因果图是否重要?:讨论许多提出的因果图是否重要,以及如何处理这些问题。
第十章 测量偏倚
- 10.1 鉴别与估计:介绍鉴别和估计的概念,以及如何在随机变异的情况下进行鉴别和估计。
- 10.2 因果效应的估计:讨论如何在随机变异的情况下估计因果效应。
- 10.3 超级总体的神话:介绍超级总体的概念和影响,以及如何处理超级总体的问题。
- 10.4 条件性“原则”:讨论条件性“原则”的概念和应用,以及如何使用条件性“原则”来处理随机变异的问题。
- 10.5 维数的诅咒:介绍维数的概念和影响,以及如何处理维数的问题。