
线性回归
文章平均质量分 89
老炉传说
追求美的事物
展开
-
Cox 比例风险模型中HR和置信区间
Cox 回归是一种用于生存分析的统计模型,它可以用来估计某个因素对生存时间的影响。Cox 回归基于 Cox 比例风险模型,该模型假设风险比率是常数,即不随时间变化。在 Cox 回归中,我们使用最大似然方法来估计模型参数。原创 2023-04-18 15:08:37 · 4291 阅读 · 1 评论 -
多元线性回归batchsize为N的情况分析
之前介绍了一元线性回归batchsize=1和N的情况,现在我们探讨一下多元线性回归中标签是标量。为了简单起见,我们还是先考虑batchsize为1的情况,这时损失函数。为每批batch的x值矩阵,在第一列增加了一个全1的列。下面考虑batchsize为N的情况,这时损失函数。为了更简洁的用向量表示,将参数。同样的方法可求出其他分量的偏导。表示,这样参数也是有M个,用。,属性有M个,分别用。原创 2023-03-07 10:30:21 · 385 阅读 · 0 评论 -
一次输入多个数据-batchsize大于1的简单的线性回归模型-标量
接上篇,由于batchsize为1,因此loss有很大的波动,这篇我们讨论batchsize大于1的情况。若batchsize数量为N,则。是长度为N的列向量,**使用向量表示可以让我们轻松使用numpy实现回归过程。可以看到增大batsize后损失函数比较稳定。为每个batch中所有的。为每个batch中所有的。原创 2023-03-06 18:27:41 · 508 阅读 · 0 评论 -
最简单的线性回归模型-标量
在batchsize为1的时候,loss波动很大。因此有必要增大batchsize,下一篇我们在此基础上增加batchsize看看线性回归的结果。,我们采用梯度下降方法对这两个参数进行更新的话,需要求出两个参数的梯度,也就是需要求出。每批输入的量batch size 为。每批输入的量batch size 为。为标量的情况,那么我们的线性函数为。为标量的情况,那么我们的线性函数为。每次训练完需要更新参数。因此每批训练的损失函数。同样为一个标量,设为。初始化赋值,设定步长。同样为一个向量,设为。原创 2023-03-06 15:55:18 · 443 阅读 · 0 评论