引入
现在有一个联通图,有N个点,M条边,并且会有重边,求可以使任意两点都联通的边的最小/最大权值。
其实这个问题就是求最小/最大生成树。下面以最小生成树为例,作一下分析。
第一,其实我们可以用贪心的思想,要权值和最小,则每条边就要最小,所以我们可以先把边权排个序。
第二,要任意两点都联通,有些边就不能不选,如果这条边的两个端点还未连接就必须要选了。
但不是要边权最小吗?我们是先排了序,所以答案一定是最优的。
现在的问题是怎么判断两个端点是否连接呢?可以用并查集实现。
第三,我们肯定要尽量少的选边,但有要求任意两点都联通,所以最少选N-1条边,当已经选了N-1条边时,就可以退出循环了。
这就是著名的kruskal算法。如果是求最大生成树,只需要把cmp函数的不等号变个方向即可。
例题
分析
最小生成树裸题,边求最小生成树边求不需要的边的权值。
代码
#include<bits/stdc++.h>
using namespace std;
#define INF 0x3f3f3f3f
#define full(a,b) memset(a,b,sizeof a)
#define N 2000+5
#define E 10000+5
int n,m,ans;
int fa[N];//并查集
struct node
{
int p,u,v,cost;
} edge[E];
void init()
{
full(fa,-1);
}
int cmp(node x,node y)//边权排序
{
return x.cost<y.cost;
}
int fi(int x)//查找根节点
{
if(fa[x]==-1) return x;
return fa[x]=fi(fa[x]);
}
int main()
{
// freopen("1607: 局域网.in","r",stdin);
// freopen("1607: 局域网.out","w",stdout);
init();
scanf("%d%d",&n,&m);
for(int i=1; i<=m; i++)
scanf("%d%d%d",&edge[i].u,&edge[i].v,&edge[i].cost);
sort(edge+1,edge+1+m,cmp);
for(int i=1; i<=m; i++)
{
int x=fi(edge[i].u),y=fi(edge[i].v);
if(x!=y)fa[x]=y;//端点未连接
else ans+=edge[i].cost;//删去的边
}
printf("%d",ans);
return 0;
}