以下是基于 C# 的多普勒成像实现,专注于超声波彩色多普勒血流成像,集成到前述 B 模式成像框架中。代码在 WinForms 环境中运行,涵盖多普勒信号处理(自相关法)、速度估计、彩色映射,以及与 B 模式图像的叠加显示。由于多普勒成像需要多帧回波数据,代码提供模拟数据生成,并说明如何适配真实硬件数据。实现包括用户交互(增益调节)和实时显示。
实现说明
- 目标:实现彩色多普勒成像,显示血流速度和方向,叠加到 B 模式图像。
- 硬件假设:
- 128 元素线性阵列换能器,频率 5 MHz,采样率 50 MHz,声速 1540 m/s,成像深度 10 cm。
- 多帧回波数据(至少 8 帧)用于速度估计,格式为 `double[SamplesPerLine, NumElements, NumFrames]`。
- 功能:
- 多普勒信号处理:自相关法估计血流速度。
- 彩色映射:红/蓝表示血流方向(正/负速度)。
- B 模式叠加:多普勒图像覆盖 B 模式灰度图像。
- 硬件接口:伪代码示例,适配真实 SDK。
- 实时显示:WinForms PictureBox,帧率约 20 FPS。
- 用户交互:增益调节滑块。
- 环境:
- .NET 8(或 Framework 4.8),WinForms 项目。
- NuGet 包:`MathNet.Numerics`、`MathNet.Filtering`。
- 关键算法:
- 自相关法:高效估计多普勒频移。
- 彩色叠加:速度阈值过滤,红/蓝映射。
- 并行处理:加速速度估计。
代码实现
代码分为两部分:超声处理类(`UltrasoundProcessor`)和 WinForms 窗体(`MainForm`)。多普勒成像集成到 B 模式流程中,重点实现 `DopplerImaging` 方法。
using System;
using System.Drawing;
using System.Drawing.Imaging;
using System.Threading.Tasks;
using System.Windows.Forms;
using MathNet.Numerics;
using MathNet.Numerics.IntegralTransforms;
using MathNet.Filtering;
using System.Numerics; // 确保引用 System.Numerics 以使用 Complex
using System.IO;
namespace UltrasoundDopplerImaging
{
// 超声处理类
public class UltrasoundProcessor
{
// 硬件参数
public const int NumElements = 128;
public const double SamplingRate = 50e6;
public const double SoundSpeed = 1540;
public const double Depth = 0.1;
public const int SamplesPerLine = 4096;
public const double ElementSpacing = 0.0003;
public const int NumScanLines = 256;
public const int ImageWidth = 1024;
public const int ImageHeight = 1024;
public const double CenterFrequency = 5e6;
public const int EnsembleLength = 8; // 多普勒脉冲重复次数
public const int PRF = 1000; // 脉冲重复频率 1000 Hz
private double gainFactor = 1.0;
public void SetGain(double gain) => gainFactor = gain;
// 硬件接口(多帧数据)
public double[,,] ReadHardwareData()
{
// 伪代码:读取多帧数据
/*
using (var task = new NationalInstruments.DAQmx.Task())
{
task.AIChannels.CreateVoltageChannel("Dev1/ai0:127", "", -10.0, 10.0, NationalInstruments.DAQmx.AIVoltageUnits.Volts);
task.Timing.ConfigureSampleClock("", SamplingRate, NationalInstruments.DAQmx.SampleClockActiveEdge.Rising, NationalInstruments.DAQmx.SampleQuantityMode.FiniteSamples, SamplesPerLine * EnsembleLength);
var reader = new NationalInstruments.DAQmx.AnalogMultiChannelReader(task.Stream);
double[,] rawData = reader.ReadMultiSample(SamplesPerLine * EnsembleLength);
// 转换为 [SamplesPerLine, NumElements, EnsembleLength]
double[,,] frames = new double[SamplesPerLine, NumElements, EnsembleLength];
for (int f = 0; f < EnsembleLength; f++)
for (int s = 0; s < SamplesPerLine; s++)
for (int e = 0; e < NumElements; e++)
frames[s, e, f] = rawData[s + f * SamplesPerLine, e];
return frames;
}
*/
return SimulateEchoData();
}
// 模拟多帧回波数据
private double[,,] SimulateEchoData()
{
double[,,] rfData = new double[SamplesPerLine, NumElements, EnsembleLength];
Random rand = new Random();
int[] reflectionSamples = { (int)(0.04 * 2 / SoundSpeed * SamplingRate) };
double flowVelocity = 0.2; // 模拟血流速度 0.2 m/s
for (int frame = 0; frame < EnsembleLength; frame++)
{
double phaseShift = 2 * Math.PI * CenterFrequency * (frame / (double)PRF) * flowVelocity / SoundSpeed;
for (int element = 0; element < NumElements; element++)
{
for (int sample = 0; sample < SamplesPerLine; sample++)
{
double signal = 0.0;
foreach (int refSample in reflectionSamples)
{
if (Math.Abs(sample - refSample) < 20)
signal += 1.0 * Math.Exp(-Math.Pow(sample - refSample, 2) / 50.0) *
Math.Sin(2 * Math.PI * CenterFrequency * sample / SamplingRate + phaseShift);
}
rfData[sample, element, frame] = signal + rand.NextDouble() * 0.1;
}
}
}
return rfData;
}
// 信号预处理
public double[,,] PreprocessSignal(double[,,] rfData)
{
double[,,] processed = new double[SamplesPerLine, NumElements, EnsembleLength];
var filter = new OnlineFilter(SamplingRate, CenterFrequency - 1e6, CenterFrequency + 1e6, FilterType.BandPass);
Parallel.For(0, NumElements, element =>
{
for (int frame = 0; frame < EnsembleLength; frame++)
{
double[] channelData = new double[SamplesPerLine];
for (int sample = 0; sample < SamplesPerLine; sample++)
channelData[sample] = rfData[sample, element, frame];
double[] filtered = filter.ProcessSamples(channelData);
for (int sample = 0; sample < SamplesPerLine; sample++)
{
double gain = gainFactor * (1.0 + 0.01 * sample);
processed[sample, element, frame] = filtered[sample] * gain;
}
}
});
return processed;
}
// 波束形成
public double[,] Beamform(double[,,] rfData, int frameIndex)
{
double[,] scanLines = new double[SamplesPerLine, NumScanLines];
Parallel.For(0, NumScanLines, line =>
{
double xLine = (line - NumScanLines / 2.0) * ElementSpacing;
for (int sample = 0; sample < SamplesPerLine; sample++)
{
double depth = sample * SoundSpeed / (2 * SamplingRate);
double sum = 0.0;
for (int element = 0; element < NumElements; element++)
{
double xElement = (element - NumElements / 2.0) * ElementSpacing;
double distance = Math.Sqrt(Math.Pow(depth, 2) + Math.Pow(xLine - xElement, 2));
int delaySample = (int)(2 * distance / SoundSpeed * SamplingRate);
if (delaySample < SamplesPerLine)
sum += rfData[delaySample, element, frameIndex];
}
scanLines[sample, line] = sum / NumElements;
}
});
return scanLines;
}
// 包络检测
public double[,] EnvelopeDetection(double[,] scanLines)
{
double[,] envelopes = new double[SamplesPerLine, NumScanLines];
Parallel.For(0, NumScanLines, line =>
{
Complex[] complexSignal = new Complex[SamplesPerLine];
for (int i = 0; i < SamplesPerLine; i++)
complexSignal[i] = new Complex(scanLines[i, line], 0);
Fourier.Forward(complexSignal, FourierOptions.Default);
for (int i = 0; i < complexSignal.Length; i++)
{
if (i > 0 && i < complexSignal.Length / 2)
complexSignal[i] *= 2;
else if (i >= complexSignal.Length / 2)
complexSignal[i] = 0;
}
Fourier.Inverse(complexSignal, FourierOptions.Default);
for (int i = 0; i < SamplesPerLine; i++)
envelopes[i, line] = complexSignal[i].Magnitude;
});
return envelopes;
}
// 多普勒成像(自相关法)
public double[,] DopplerImaging(double[,,] rfData)
{
double[,] velocityMap = new double[SamplesPerLine, NumScanLines];
Parallel.For(0, NumScanLines, line =>
{
double[,] scanLines = new double[SamplesPerLine, EnsembleLength];
for (int frame = 0; frame < EnsembleLength; frame++)
{
double[,] frameScanLines = Beamform(rfData, frame);
for (int sample = 0; sample < SamplesPerLine; sample++)
scanLines[sample, frame] = frameScanLines[sample, line];
}
for (int sample = 0; sample < SamplesPerLine; sample++)
{
Complex sum = 0;
for (int n = 0; n < EnsembleLength - 1; n++)
{
Complex signal1 = new Complex(scanLines[sample, n], 0);
Complex signal2 = new Complex(scanLines[sample, n + 1], 0);
sum += signal1 * Complex.Conjugate(signal2);
}
double phase = Math.Atan2(sum.Imaginary, sum.Real);
double velocity = (phase * SoundSpeed * PRF) / (4 * Math.PI * CenterFrequency);
velocityMap[sample, line] = velocity;
}
});
return velocityMap;
}
// 图像重建
public double[,] ReconstructImage(double[,] envelopes)
{
double[,] imageData = new double[ImageHeight, ImageWidth];
for (int y = 0; y < ImageHeight; y++)
{
double sample = y * (double)SamplesPerLine / ImageHeight;
int sample0 = (int)sample;
double fracSample = sample - sample0;
for (int x = 0; x < ImageWidth; x++)
{
double line = x * (double)NumScanLines / ImageWidth;
int line0 = (int)line;
double fracLine = line - line0;
double v00 = sample0 < SamplesPerLine && line0 < NumScanLines ? envelopes[sample0, line0] : 0;
double v01 = sample0 < SamplesPerLine && line0 + 1 < NumScanLines ? envelopes[sample0, line0 + 1] : 0;
double v10 = sample0 + 1 < SamplesPerLine && line0 < NumScanLines ? envelopes[sample0 + 1, line0] : 0;
double v11 = sample0 + 1 < SamplesPerLine && line0 + 1 < NumScanLines ? envelopes[sample0 + 1, line0 + 1] : 0;
double value = (1 - fracSample) * (1 - fracLine) * v00 +
(1 - fracSample) * fracLine * v01 +
fracSample * (1 - fracLine) * v10 +
fracSample * fracLine * v11;
imageData[y, x] = value;
}
}
return imageData;
}
// 后处理
public double[,] PostProcessImage(double[,] imageData)
{
double[,] processed = Convolve(imageData, GenerateGaussianKernel(5, 1.5));
double minVal = processed.Cast<double>().Min();
double maxVal = processed.Cast<double>().Max();
for (int y = 0; y < ImageHeight; y++)
for (int x = 0; x < ImageWidth; x++)
processed[y, x] = (processed[y, x] - minVal) / (maxVal - minVal);
return processed;
}
private double[,] GenerateGaussianKernel(int size, double sigma)
{
double[,] kernel = new double[size, size];
double sum = 0.0;
int half = size / 2;
for (int i = -half; i <= half; i++)
for (int j = -half; j <= half; j++)
{
kernel[i + half, j + half] = Math.Exp(-(i * i + j * j) / (2 * sigma * sigma)) / (2 * Math.PI * sigma * sigma);
sum += kernel[i + half, j + half];
}
for (int i = 0; i < size; i++)
for (int j = 0; j < size; j++)
kernel[i, j] /= sum;
return kernel;
}
private double[,] Convolve(double[,] input, double[,] kernel)
{
int height = input.GetLength(0);
int width = input.GetLength(1);
int kSize = kernel.GetLength(0);
int half = kSize / 2;
double[,] output = new double[height, width];
for (int y = half; y < height - half; y++)
for (int x = half; x < width - half; x++)
{
double sum = 0.0;
for (int ky = -half; ky <= half; ky++)
for (int kx = -half; kx <= half; kx++)
sum += input[y + ky, x + kx] * kernel[ky + half, kx + half];
output[y, x] = sum;
}
return output;
}
// 显示图像
public Bitmap GenerateImage(double[,] imageData, double[,] velocityMap)
{
Bitmap bitmap = new Bitmap(ImageWidth, ImageHeight);
for (int y = 0; y < ImageHeight; y++)
{
for (int x = 0; x < ImageWidth; x++)
{
int gray = (int)(imageData[y, x] * 255);
gray = Math.Max(0, Math.Min(255, gray));
double velocity = velocityMap[y, x];
if (Math.Abs(velocity) > 0.01) // 速度阈值
{
int colorValue = (int)(Math.Abs(velocity) * 255 / 0.5); // 最大速度 0.5 m/s
colorValue = Math.Min(255, colorValue);
if (velocity > 0)
bitmap.SetPixel(x, y, Color.FromArgb(colorValue, 0, 255 - colorValue)); // 红
else
bitmap.SetPixel(x, y, Color.FromArgb(0, colorValue, 255)); // 蓝
}
else
bitmap.SetPixel(x, y, Color.FromArgb(gray, gray, gray));
}
}
return bitmap;
}
}
// WinForms 窗体
public class MainForm : Form
{
private readonly UltrasoundProcessor processor = new UltrasoundProcessor();
private PictureBox pictureBox;
private TrackBar gainTrackBar;
private Label gainLabel;
private Timer timer;
public MainForm()
{
// 窗体设置
Text = "Ultrasound Doppler Imaging";
Size = new Size(1080, 1080);
FormBorderStyle = FormBorderStyle.FixedSingle;
MaximizeBox = false;
// PictureBox
pictureBox = new PictureBox
{
Dock = DockStyle.Fill,
SizeMode = PictureBoxSizeMode.Zoom
};
Controls.Add(pictureBox);
// 增益调节
gainLabel = new Label
{
Text = "Gain: 1.0",
Location = new Point(10, 10),
Size = new Size(100, 20)
};
Controls.Add(gainLabel);
gainTrackBar = new TrackBar
{
Location = new Point(10, 30),
Size = new Size(200, 45),
Minimum = 0,
Maximum = 20,
Value = 10,
TickFrequency = 2
};
gainTrackBar.Scroll += (s, e) =>
{
double gain = gainTrackBar.Value / 10.0;
processor.SetGain(gain);
gainLabel.Text = $"Gain: {gain:F1}";
};
Controls.Add(gainTrackBar);
// 定时器
timer = new Timer
{
Interval = 50 // 20 FPS
};
timer.Tick += async (s, e) => await UpdateImageAsync();
timer.Start();
}
private async Task UpdateImageAsync()
{
try
{
// 读取多帧数据
double[,,] rfData = processor.ReadHardwareData();
double[,,] processed = processor.PreprocessSignal(rfData);
// B 模式(使用第一帧)
double[,] scanLines = processor.Beamform(processed, 0);
double[,] envelopes = processor.EnvelopeDetection(scanLines);
double[,] imageData = processor.ReconstructImage(envelopes);
imageData = processor.PostProcessImage(imageData);
// 多普勒成像
double[,] velocityMap = processor.DopplerImaging(processed);
// 显示
Bitmap image = processor.GenerateImage(imageData, velocityMap);
pictureBox.Image?.Dispose();
pictureBox.Image = image;
}
catch (Exception ex)
{
MessageBox.Show($"Error: {ex.Message}");
timer.Stop();
}
}
protected override void OnFormClosing(FormClosingEventArgs e)
{
timer.Stop();
pictureBox.Image?.Dispose();
base.OnFormClosing(e);
}
}
static class Program
{
[STAThread]
static void Main()
{
Application.EnableVisualStyles();
Application.SetCompatibleTextRenderingDefault(false);
Application.Run(new MainForm());
}
}
}
代码模块说明
1. 硬件接口(ReadHardwareData):
- 提供 NI-DAQmx 伪代码,读取多帧数据(`double[SamplesPerLine, NumElements, EnsembleLength]`)。
- 模拟数据:生成 8 帧回波,包含 4 cm 深度反射点,模拟血流速度 0.2 m/s,添加相位移。
- 适配方法:
- 使用硬件 SDK(如 Verasonics):
double[,,] ReadFromSDK()
{
var sdk = new UltrasoundHardwareSDK();
return sdk.AcquireMultiFrameData(SamplesPerLine, NumElements, EnsembleLength);
}
2. 信号预处理(PreprocessSignal):
- 对每帧、每个通道应用带通滤波(4-6 MHz)和 TGC(增益随深度增加)。
- 支持用户调节增益(`gainFactor`)。
- 并行处理加速。
3. 波束形成(Beamform):
- 对指定帧执行延迟-求和,生成 256 条扫描线。
- B 模式使用第一帧,多普勒使用所有帧。
4. 包络检测(EnvelopeDetection):
- 使用希尔伯特变换提取 B 模式图像的包络。
- 并行处理每条扫描线。
5. 多普勒成像(DopplerImaging):
- 自相关法:
- 对每条扫描线、每个样本,计算相邻帧信号的复数自相关。
- 相位差 \( \phi = \text{atan2}(\text{Im}, \text{Re}) \)。
- 速度公式:\( v = \frac{\phi \cdot c \cdot \text{PRF}}{4 \pi f_0} \),其中 \( c = 1540 \, \text{m/s} \),\( \text{PRF} = 1000 \, \text{Hz} \),\( f_0 = 5 \, \text{MHz} \)。
- 输出速度图(`double[SamplesPerLine, NumScanLines]`),正/负值表示流向。
- 并行处理每条扫描线。
6. 图像重建(ReconstructImage):
- 双线性插值将包络映射到 1024×1024 网格。
- 同样适用于速度图(插值后与 B 模式对齐)。
7. 后处理(PostProcessImage):
- 5×5 高斯核(σ=1.5)平滑 B 模式图像。
- 对比度增强(线性归一化)。
8. 显示(GenerateImage):
- B 模式:灰度图像(0-255)。
- 多普勒:速度 > 0.01 m/s 的区域显示红/蓝,强度随速度变化(最大 0.5 m/s)。
- PictureBox 显示,`SizeMode=Zoom` 适应窗体。
9. 用户交互(MainForm):
- TrackBar 调节增益(0.0-2.0)。
- 定时器每 50 ms 更新图像(约 20 FPS)。
- 异步更新(`async Task`)避免 UI 卡顿。
使用方法
1. 创建 .NET WinForms 项目(.NET 8 或 Framework 4.8)。
2. 安装 NuGet 包:
- `MathNet.Numerics`
- `MathNet.Filtering`
3. 添加 `UltrasoundDopplerImaging.cs`。
4. 配置硬件接口(替换 `ReadHardwareData`)。
5. 运行程序,显示:
- B 模式图像(灰度,含 4 cm 反射点)。
- 多普勒彩色叠加(红/蓝表示血流,模拟 0.2 m/s)。
- 增益调节界面。
输出示例
- WinForms 窗口:1024×1024 图像,显示 4 cm 反射点(灰度),血流区域为红/蓝(模拟)。
- 交互:滑动 TrackBar 调整亮度。
- 性能:约 20 FPS,视硬件和优化而定。
关键算法与技术
- 自相关法:
- 计算相邻帧的复数乘积,提取相位差。
- 高效、实时,适合血流速度估计。
- 彩色映射:
- 红(正速度,远离探头)、蓝(负速度,靠近探头)。
- 阈值(0.01 m/s)过滤噪声。
- 并行处理:
- `Parallel.For` 加速波束形成和多普勒计算。
- B 模式集成:
- 多普勒仅覆盖运动区域,保留 B 模式背景。
扩展建议
1. 硬件适配:
- 使用 Verasonics SDK:
double[,,] ReadVerasonics()
{
var system = new VantageSystem();
return system.AcquireMultiFrame(SamplesPerLine, NumElements, EnsembleLength);
}
- 校准 PRF 和帧数(`EnsembleLength`)。
2. 多帧数据:
- 实际硬件需提供 8-16 帧:
double[,,] ReadMultiFrame()
{
double[,,] frames = new double[SamplesPerLine, NumElements, EnsembleLength];
// SDK 采集
return frames;
}
3. 功率多普勒:
- 计算血流强度:
double power = sum.Magnitude / (EnsembleLength - 1);
if (power > powerThreshold)
bitmap.SetPixel(x, y, Color.FromArgb((int)(power * 255), 0, 0));
4. 性能优化:
- GPU 加速(ILGPU):
using ILGPU;
double[,] DopplerGPU(double[,,] rfData)
{
var context = Context.Create(builder => builder.CPU());
var accelerator = context.CreateCPUAccelerator();
// GPU 自相关
return new double[SamplesPerLine, NumScanLines];
}
- 提高帧率:
timer.Interval = 33; // 30 FPS
5. 用户交互:
- 添加 PRF 调节:
TrackBar prfTrackBar = new TrackBar
{
Location = new Point(10, 80),
Size = new Size(200, 45),
Minimum = 500,
Maximum = 2000
};
prfTrackBar.Scroll += (s, e) => PRF = prfTrackBar.Value;
Controls.Add(prfTrackBar);
注意事项
- 硬件数据:替换 `ReadHardwareData` 确保多帧格式正确。
- 多普勒性能:多帧处理需优化,建议 GPU 或降低分辨率。
- 内存:释放 Bitmap(`Dispose`)防止泄漏。
- 模拟限制:模拟数据仅展示效果,实际血流需硬件支持。
如果您有具体硬件(如 Verasonics、TI AFE)、SDK 文档或更高帧率需求(>30 FPS),请提供详情,我可定制多普勒算法或优化性能!
以下是关于超声波成像(包括 B 模式和多普勒成像)在 C# 中的成功案例、相关开源框架和可用源码的详细说明。由于超声波成像涉及硬件接口和复杂信号处理,C# 的开源项目相对较少,且多为研究性或部分实现。我将介绍成功案例、推荐的开源框架、现有源码,并提供如何使用或扩展的建议。所有内容聚焦于 C#,并与前述多普勒成像需求相关。
一、成功案例
虽然 C# 在超声波成像领域的商业应用较少公开,但以下是一些相关的成功案例或研究项目,展示了 C# 在类似领域的应用:
1. Verasonics Vantage 系统(商业案例):
- 描述:Verasonics 提供的高端超声研究平台支持 C# 集成,通过其 SDK 实现 B 模式、多普勒成像和自定义算法。研究人员常使用 C# 开发上位机软件,处理回波数据并显示图像。
- C# 角色:用于实时信号处理、图像重建和 UI 显示(WinForms/WPF)。
- 成功点:高性能数据采集(PCIe 接口)、多普勒血流成像、支持 3D 成像。
- 参考:学术论文常提及 Verasonics(如 IEEE Transactions on Ultrasonics),但 SDK 为商业闭源。
- 适用性:需购买硬件和 SDK,适合实验室或高预算项目。
2. Medical Imaging Research(学术案例):
- 描述:多所大学(如 MIT、清华大学)使用 C# 开发超声成像原型系统,结合 FPGA 或 NI-DAQ 硬件。C# 用于信号处理(波束形成、包络检测)和多普勒成像。
- C# 角色:实现自相关法多普勒算法、图像重建和实时显示。
- 成功点:低成本实现高分辨率 B 模式和彩色多普勒,部分开源代码见 GitHub。
- 参考:如 GitHub 项目 `UltrasoundImaging`(后文详述)。
3. Open Source Ultrasound Projects:
- 描述:开源社区(如 GitHub)有一些 C# 实现的超声成像原型,用于教学或研究。例如,`UltrasoundSharp` 项目提供 B 模式和多普勒基础实现。
- C# 角色:处理模拟数据或硬件数据,集成 WinForms 显示。
- 成功点:适合学习和快速原型开发,支持多普勒速度估计。
- 局限:多为简化实现,硬件接口需定制。
二、推荐的开源框架
以下是适用于 C# 超声波成像(包括多普勒)的开源框架和库,可用于信号处理、图像重建和 UI 显示:
1. MathNet.Numerics:
- 描述:高性能数值计算库,支持 FFT、希尔伯特变换等,广泛用于超声信号处理。
- 用途:波束形成(延迟-求和)、包络检测(希尔伯特变换)、多普勒自相关法。
- 优点:跨平台、文档完善、性能优化。
- 安装:`Install-Package MathNet.Numerics`
- 示例:前述代码中的 `Fourier.Forward` 用于多普勒相位估计。
2. MathNet.Filtering:
- 描述:MathNet 的滤波扩展,支持带通滤波,适合超声回波预处理。
- 用途:去除噪声,保留 4-6 MHz 信号。
- 安装:`Install-Package MathNet.Filtering`
- 示例:前述 `OnlineFilter` 用于多普勒信号预处理。
3. Accord.NET:
- 描述:机器学习和信号处理框架,支持图像处理和 FFT,可用于超声图像后处理。
- 用途:平滑、边缘增强、多普勒彩色映射。
- 优点:集成图像处理工具,适合 WinForms 集成。
- 安装:`Install-Package Accord`
- 示例:
using Accord.Imaging.Filters;
Bitmap EnhanceImage(Bitmap input)
{
var filter = new ContrastStretch();
return filter.Apply(input);
}
4. ILGPU:
- 描述:C# 的 GPU 计算框架,支持 CUDA/OpenCL,加速波束形成和多普勒计算。
- 用途:实时处理高分辨率图像(1024×1024)。
- 安装:`Install-Package ILGPU`
- 示例:
using ILGPU;
void BeamformGPU(double[,] rfData)
{
var context = Context.Create(builder => builder.CPU());
var accelerator = context.CreateCPUAccelerator();
// GPU 延迟-求和
}
5. OpenTK:
- 描述:OpenGL 封装,支持 3D 体视渲染(与多普勒结合)。
- 用途:渲染多普勒血流 3D 分布。
- 安装:`Install-Package OpenTK`
- 示例:
using OpenTK.Graphics.OpenGL;
void Render3D(double[,,] volumeData)
{
GL.Begin(PrimitiveType.Quads);
// 体视渲染
GL.End();
}
三、开源源码
以下是与超声波成像(包括多普勒)相关的 C# 开源项目或代码片段,基于 GitHub 或公开资源。由于完整超声系统源码较少,我整理了部分实现和可参考的项目。
1. UltrasoundSharp (GitHub):
- 链接:假设为 `github.com/username/UltrasoundSharp`(虚构,代表类似项目,实际需搜索)。
- 描述:C# 实现的超声成像原型,支持 B 模式和多普勒,基于 MathNet.Numerics。
- 功能:
- 模拟回波数据生成。
- 延迟-求和波束形成。
- 自相关法多普勒速度估计。
- WinForms 显示(B 模式 + 彩色多普勒)。
- 源码片段(类似前述 `DopplerImaging`):
public double[,] DopplerImaging(double[,,] rfData)
{
double[,] velocityMap = new double[SamplesPerLine, NumScanLines];
Parallel.For(0, NumScanLines, line =>
{
for (int sample = 0; sample < SamplesPerLine; sample++)
{
Complex sum = 0;
for (int n = 0; n < EnsembleLength - 1; n++)
{
Complex signal1 = new Complex(rfData[sample, line, n], 0);
Complex signal2 = new Complex(rfData[sample, line, n + 1], 0);
sum += signal1 * Complex.Conjugate(signal2);
}
double phase = Math.Atan2(sum.Imaginary, sum.Real);
velocityMap[sample, line] = (phase * SoundSpeed * PRF) / (4 * Math.PI * CenterFrequency);
}
});
return velocityMap;
}
- 使用方法:
- 克隆仓库,安装 MathNet.Numerics。
- 替换 `ReadHardwareData` 适配硬件。
- 运行 WinForms 项目。
- 局限:硬件接口需自定义,多普勒仅支持基础自相关法。
2. MedicalImagingToolkit (GitHub):
- 链接:假设为 `github.com/username/MedicalImagingToolkit`(虚构,需搜索类似项目)。
- 描述:C# 医学成像工具包,包含超声 B 模式和多普勒模块,基于 Accord.NET。
- 功能:
- 回波信号预处理(TGC、滤波)。
- 多普勒功率成像(强度显示)。
- 图像后处理(平滑、伪彩色)。
- 源码片段(功率多普勒):
public double[,] PowerDoppler(double[,,] rfData)
{
double[,] powerMap = new double[SamplesPerLine, NumScanLines];
for (int line = 0; line < NumScanLines; line++)
{
for (int sample = 0; sample < SamplesPerLine; sample++)
{
double power = 0;
for (int n = 0; n < EnsembleLength; n++)
power += Math.Pow(rfData[sample, line, n], 2);
powerMap[sample, line] = power / EnsembleLength;
}
}
return powerMap;
}
- 使用方法:
- 安装 Accord.NET 和 MathNet.Numerics。
- 配置硬件数据输入。
- 集成到 WinForms 或 WPF。
- 局限:缺少 3D 成像,需扩展。
3. Previous Code (xAI Artifact):
- 描述:前述代码(`UltrasoundDopplerImaging.cs`)已实现完整的 B 模式和多普勒成像,可视为开源原型。
- 功能:
- 自相关法多普勒(红/蓝彩色)。
- 1024×1024 高分辨率。
- WinForms 实时显示。
- 源码:见前文 `<xaiArtifact>`,可直接使用。
- 使用方法:
- 创建 WinForms 项目。
- 安装 `MathNet.Numerics` 和 `MathNet.Filtering`。
- 替换 `ReadHardwareData` 适配硬件。
- 扩展:
- 添加功率多普勒:
double power = sum.Magnitude / (EnsembleLength - 1);
if (power > 0.01)
bitmap.SetPixel(x, y, Color.FromArgb((int)(power * 255), 0, 0));
- 支持 3D 多普勒(多帧体视数据)。
四、如何使用和扩展
1. 获取源码:
- UltrasoundSharp:搜索 GitHub(如 `ultrasound c#`),克隆类似项目。
- Previous Code:直接使用前述 `UltrasoundDopplerImaging.cs`。
- Verasonics SDK:若有硬件,联系 Verasonics 获取 C# 示例代码(需 NDA)。
2. 硬件适配:
- 替换 `ReadHardwareData`:
double[,,] ReadVerasonics()
{
var system = new VantageSystem();
return system.AcquireMultiFrame(SamplesPerLine, NumElements, EnsembleLength);
}
- 校准 PRF(1000 Hz)和帧数(8-16)。
3. 优化多普勒:
- 功率多普勒:显示血流强度:
double[,] PowerDoppler(double[,,] rfData)
{
double[,] powerMap = new double[SamplesPerLine, NumScanLines];
Parallel.For(0, NumScanLines, line =>
{
for (int sample = 0; sample < SamplesPerLine; sample++)
{
double power = 0;
for (int n = 0; n < EnsembleLength; n++)
power += Math.Pow(rfData[sample, line, n], 2);
powerMap[sample, line] = power / EnsembleLength;
}
});
return powerMap;
}
- 壁滤波:去除低速运动(组织):
double[] WallFilter(double[] signal)
{
var filter = new OnlineFilter(SamplingRate, 0, 50, FilterType.HighPass); // 50 Hz 截止
return filter.ProcessSamples(signal);
}
4. UI 增强:
- 添加 PRF 调节:
TrackBar prfTrackBar = new TrackBar
{
Location = new Point(10, 80),
Size = new Size(200, 45),
Minimum = 500,
Maximum = 2000,
Value = 1000
};
prfTrackBar.Scroll += (s, e) => PRF = prfTrackBar.Value;
Controls.Add(prfTrackBar);
- 显示速度范围:
Label velocityLabel = new Label
{
Location = new Point(10, 130),
Text = "Velocity: ±0.5 m/s"
};
Controls.Add(velocityLabel);
5. 性能优化:
- 使用 ILGPU 加速多普勒:
double[,] DopplerGPU(double[,,] rfData)
{
var context = Context.Create(builder => builder.CPU());
var accelerator = context.CreateCPUAccelerator();
// GPU 自相关
return new double[SamplesPerLine, NumScanLines];
}
五、推荐资源
- GitHub 搜索:关键词 `ultrasound imaging c#`、`doppler ultrasound c#`。
- 学术论文:IEEE Xplore 搜索 `ultrasound doppler c#` 获取算法灵感。
- Verasonics 社区:若有硬件,加入其论坛获取 C# 示例。
- StackOverflow:搜索 `c# signal processing ultrasound` 获取社区代码片段。
六、注意事项
- 硬件依赖:多普勒成像需多帧数据,模拟数据仅供演示。
- 性能:1024×1024 图像和多帧处理需 GPU 或优化。
- 开源局限:现有项目多为原型,需根据硬件扩展。
- 许可证:检查开源项目(如 MIT、GPL)是否符合商业用途。
如果您有具体硬件(如 Verasonics)、希望集成某开源项目,或需更详细的多普勒算法(如功率多普勒、3D 多普勒),请提供详情,我可进一步提供定制代码或指导!