杂波环境下的PCRLB建模

通过假设观测模型中来源于虚警的量测在雷达波门内服从均匀分布,该虚警在波门内位置信息对应的PDF可表示为:
p ( w k q ) = 1 V p\left(\mathbf{w}_{k}^{q}\right)=\frac{1}{V} p(wkq)=V1
上式中, V V V表示雷达波门面积。假设虚警的数量信息服从泊松分布,来源于虚警的量测数量为 m m m的概率可以表示为:
p f a ( m ) = ( λ V ) m e − λ V m ! . p_{\mathbf{fa}}\left(m\right)=\frac{\left(\lambda V\right)^{m}e^{-\lambda V}}{m!}. pfa(m)=m!(λV)meλV.
当雷达收到 M k q M_{k}^{q} Mkq个量测时,量测的构成存在两种可能:
1 个真实量测与 M k q − 1 M_{k}^{q}-1 Mkq1个虚警;或者 M k q M_{k}^{q} Mkq个虚警。
因此,雷达 𝑘 时刻存在 M k q M_{k}^{q} Mkq个量测的概率可表示为:
p ( M k q ) = ( 1 − p d ) p f a ( M k q ) ⏟ ( M k q ) 个虚警 + p d p f a ( M k q − 1 ) ⏟ 1 个量测 + M k q 个虚警 . p\left(M_k^q\right)=\underbrace{\left(1-p_d\right)p_{\mathbf{fa}}\left(M_k^q\right)}_{\left(M_k^q\right)\text{个虚警}} + \underbrace { p _ { \mathbf{d}}p_{\mathbf{fa}}\left(M_k^q-1\right)}_{1\text{个量测}+M_k^q\text{个虚警}} . p(Mkq)=(Mkq)个虚警 (1pd)pfa(Mkq)+1个量测+Mkq个虚警 pdpfa(Mkq1).
在给定 M k q M_{k}^{q} Mkq个量测前提下,存在1个真实量测的概率可表示为:
ϵ ( M k q ) = p d p f a ( M k q − 1 ) p ( M k q ) \epsilon\left(M_k^q\right)=\frac{p_\mathbf{d}p_\mathbf{fa}\left(M_k^q-1\right)}{p\left(M_k^q\right)} ϵ(Mkq)=p(Mkq)pdpfa(Mkq1)
杂波情况下量测的似然函数可表示为:
p ( z k q ∣ x k q ) = 1 − ϵ ( M k q ) V M k q + ϵ ( M k q ) M k q V M k q − 1 ∑ m = 1 M k q p 1 ( z k q ( m ) ∣ h ( x k ) ) , p\left(\mathbf{z}_{k}^{q}|\mathbf{x}_{k}^{q}\right)=\frac{1-\epsilon\left(M_{k}^{q}\right)}{V^{M_{k}^{q}}}+\frac{\epsilon\left(M_{k}^{q}\right)}{M_{k}^{q}V^{M_{k}^{q}-1}}\sum_{m=1}^{M_{k}^{q}}p_{1}\left(\mathbf{z}_{k}^{q}\left(m\right)|\mathbf{h}\left(\mathbf{x}_{k}\right)\right), p(zkqxkq)=VMkq1ϵ(Mkq)+MkqVMkq1ϵ(Mkq)m=1Mkqp1(zkq(m)h(xk)),
Notion:
1 − ϵ ( M k q ) = ( 1 − p d ) 1-\epsilon\left(M_{k}^{q}\right)=\left(1-p_d\right) 1ϵ(Mkq)=(1pd)
p f a ( M k q ) = 1 V M k q p_{\mathbf{fa}}\left(M_k^q\right)=\frac{1}{{V^{M_{k}^{q}}}} pfa(Mkq)=VMkq1
p f a ( M k q − 1 ) = 1 M k q ∑ m = 1 M k q p 1 ( z k q ( m ) ∣ h ( x k ) ) p_{\mathbf{fa}}\left(M_k^q-1\right)=\frac{1}{M_{k}^{q}}\sum_{m=1}^{M_{k}^{q}}p_{1}\left(\mathbf{z}_{k}^{q}\left(m\right)|\mathbf{h}\left(\mathbf{x}_{k}\right)\right) pfa(Mkq1)=Mkq1m=1Mkqp1(zkq(m)h(xk)):第 m m m个真实测量来自目标

上式中, p 1 ( z k q ( m ) ∣ h ( x k ) ) p_{1}\left(\mathbf{z}_{k}^{q}\left(m\right)|\mathbf{h}\left(\mathbf{x}_{k}\right)\right) p1(zkq(m)h(xk))表示量测来源于真实目标情况下,其对应的PDF可表示为如下高斯分布:
p 1 ( z k q ( m ) ∣ h ( x k ) ) = 1 ( 2 π ) 3 ∣ Γ k q ( P k q ) ∣ exp ⁡ ( − ( z ~ k q ( m ) ) ⊤ ( Γ k q ( P k q ) ) − 1 z ~ k q ( m ) 2 ) p_{1}\left(\mathbf{z}_{k}^{q}\left(m\right)|\mathbf{h}\left(\mathbf{x}_{k}\right)\right)=\frac{1}{\sqrt{(2\pi)^{3}|\Gamma_{k}^{q}\left(P_{k}^{q}\right)|}}\exp\left(-\frac{\left(\widetilde{\mathbf{z}}_{k}^{q}\left(m\right)\right)^{\top}\left(\Gamma_{k}^{q}\left(P_{k}^{q}\right)\right)^{-1}\widetilde{\mathbf{z}}_{k}^{q}\left(m\right)}{2}\right) p1(zkq(m)h(xk))=(2π)3Γkq(Pkq) 1exp(2(z kq(m))(Γkq(Pkq))1z kq(m))
其中, z ~ k q ( m ) = z k q ( m ) − h ( x k ) \tilde{\mathbf{z}}_{k}^{q}\left(m\right)=\mathbf{z}_{k}^{q}\left(m\right)-\mathbf{h}\left(\mathbf{x}_{k}\right) z~kq(m)=zkq(m)h(xk)
最后,量测部分相关的FIM可表示为:
J ~ D , k q ( P k q ∣ x k q ) = E p ( x k q ) { ψ k q ( p d , Γ k q ( P k q ) ) ∇ x k q h ( x k q ) ( Γ k q ( P k q ) ) − 1 ∇ x k q ⊤ h ( x k q ) } = ψ k q ( p d , Γ k q ( P k q ) ) J D , k q ( P k q ∣ x k q ) , \begin{aligned} \mathbf{\tilde{J}}_{\mathsf{D},k}^{q}\left(P_{k}^{q}|\mathbf{x}_{k}^{q}\right)& =\mathrm{E}_{p(\mathbf{x}_{k}^{q})}\left\{\psi_{k}^{q}\left(p_{\mathbf{d}},\mathbf{\Gamma}_{k}^{q}(P_{k}^{q})\right)\nabla_{\mathbf{x}_{k}^{q}}\mathbf{h}\left(\mathbf{x}_{k}^{q}\right)\left(\mathbf{\Gamma}_{k}^{q}(P_{k}^{q})\right)^{-1}\nabla_{\mathbf{x}_{k}^{q}}^{\top}\mathbf{h}\left(\mathbf{x}_{k}^{q}\right)\right\} \\ &=\psi_{k}^{q}\left(p_{\mathsf{d}},\Gamma_{k}^{q}(P_{k}^{q})\right)\mathbf{J}_{\mathsf{D},k}^{q}\left(P_{k}^{q}|\mathbf{x}_{k}^{q}\right), \end{aligned} J~D,kq(Pkqxkq)=Ep(xkq){ψkq(pd,Γkq(Pkq))xkqh(xkq)(Γkq(Pkq))1xkqh(xkq)}=ψkq(pd,Γkq(Pkq))JD,kq(Pkqxkq),
其中, J D , k q ( P k q ∣ x k q ) \mathbf{J}_{\mathsf{D},k}^{q}\left(P_{k}^{q}|\mathbf{x}_{k}^{q}\right) JD,kq(Pkqxkq)表示没有杂波情况下的量测部分FIM
J D , k q ( P k q ∣ x k q ) = E { ∇ x k q h ( x k q ) ( Γ k q ( P k q ) ) − 1 ∇ x k q ⊤ h ( x k q ) } . \mathbf{J}_{\mathbf{D},k}^q\left(P_k^q|\mathbf{x}_k^q\right)=\mathrm{E}\left\{\nabla_{\mathbf{x}_k^q}\mathbf{h}\left(\mathbf{x}_k^q\right)\left(\Gamma_k^q(P_k^q)\right)^{-1}\nabla_{\mathbf{x}_k^q}^{\top}\mathbf{h}\left(\mathbf{x}_k^q\right)\right\}. JD,kq(Pkqxkq)=E{xkqh(xkq)(Γkq(Pkq))1xkqh(xkq)}.
ψ k q ( p d , Γ k q ( P k q ) ) \psi_{k}^{q}\left(p_{\mathsf{d}},\Gamma_{k}^{q}(P_{k}^{q})\right) ψkq(pd,Γkq(Pkq))为杂波带来的IRF,假设IRF与状态独立,IRF最终可简化为:
ψ k q ( p d , Γ k q ( P k q ) ) = ∑ M k q = 1 ∞ p ( M k q ) t ( M k q ) \psi_{k}^{q}\left(p_{\mathbf{d}},\Gamma_{k}^{q}(P_{k}^{q})\right)=\sum_{M_{k}^{q}=1}^{\infty}p\left(M_{k}^{q}\right)t\left(M_{k}^{q}\right) ψkq(pd,Γkq(Pkq))=Mkq=1p(Mkq)t(Mkq)
上式中,
t ( M k q ) = ∫ k ϵ 2 ( M k q ) ∣ Γ k q ( P k q ) ∣ M k q − 2 2 [ z ˉ k q ( 1 ) ] ( 1 ) 2 e − ( z ˉ k q ( 1 ) ) ⊤ ( z ˉ k q ( 1 ) ) ( 2 π ) 3 M k q V 2 ( M k q − 1 ) ( 1 − ϵ ( M k q ) V M k q + ϵ ( M k q ) ∑ m = 1 M k q p 1 ( z k q ( m ) ∣ h ( x k q ) ) M k q V M k 2 − 1 ) d z k q . t\left(M_{k}^{q}\right)=\int_{k}\frac{\epsilon^{2}\left(M_{k}^{q}\right)\left|\Gamma_{k}^{q}(P_{k}^{q})\right|^{\frac{M_{k}^{q}-2}{2}}\left[\bar{\mathbf{z}}_{k}^{q}(1)\right]_{(1)}^{2}e^{-(\bar{\mathbf{z}}_{k}^{q}(1))^{\top}(\bar{\mathbf{z}}_{k}^{q}(1))}}{(2\pi)^{3}M_{k}^{q}V^{2(M_{k}^{q}-1)}\left(\frac{1-\epsilon(M_{k}^{q})}{V^{M_{k}^{q}}}+\frac{\epsilon(M_{k}^{q})\sum_{m=1}^{M_{k}^{q}}p_{1}(\mathbf{z}_{k}^{q}(m)|\mathbf{h}(\mathbf{x}_{k}^{q}))}{M_{k}^{q}V^{M_{k}^{2}-1}}\right)}d\mathbf{z}_{k}^{q}. t(Mkq)=k(2π)3MkqV2(Mkq1)(VMkq1ϵ(Mkq)+MkqVMk21ϵ(Mkq)m=1Mkqp1(zkq(m)h(xkq)))ϵ2(Mkq)Γkq(Pkq)2Mkq2[zˉkq(1)](1)2e(zˉkq(1))(zˉkq(1))dzkq.
Γ k q ( P k q ) = diag ⁡ ( σ r 2 ( P k q ) , σ θ 2 ( P k q ) , σ f 2 ( P k q ) ) \Gamma_k^q\left(P_k^q\right)=\operatorname{diag}\left(\sigma_r^2\left(P_k^q\right),\sigma_\theta^2\left(P_k^q\right),\sigma_f^2\left(P_k^q\right)\right) Γkq(Pkq)=diag(σr2(Pkq),σθ2(Pkq),σf2(Pkq))
z ˉ k q ( m ) = ( Γ k q ( P k q ) ) − 1 z ~ k q ( m ) \bar{\mathbf{z}}_{k}^{q}\left(m\right)=\left(\Gamma_{k}^{q}\left(P_{k}^{q}\right)\right)^{-1}\tilde{\mathbf{z}}_{k}^{q}\left(m\right) zˉkq(m)=(Γkq(Pkq))1z~kq(m)
[ a ] ( 1 ) [\mathbf{a}]_{(1)} [a](1)表示向量 a \mathbf{a} a中的第1个元素
积分表示以下关于所有量测的多重积分:
∫ A d z k q ≜ ∫ A ⋯ ∫ A d z k q ( 1 ) ⋯ d z k q ( M k q ) , \int_{\mathbb{A}}d\mathbf{z}_{k}^{q}\triangleq\int_{\mathbb{A}}\cdots\int_{\mathbb{A}}d\mathbf{z}_{k}^{q}(1)\cdots d\mathbf{z}_{k}^{q}(M_{k}^{q}), AdzkqAAdzkq(1)dzkq(Mkq),

  • 1
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 1
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值