后验克拉美罗下界

文章探讨了在参数估计中,后验克拉美罗下界(PCLRB)如何利用贝叶斯信息矩阵(BFIM)进行表述。BFIM通过联合概率密度函数计算,可以分解为数据依赖的J_D和先验信息相关的J_P。PCLRB与BFIM的关系表达了估计精度的下限。文章还详细介绍了J_D和J_P的计算方法,以及在观测数据的更新迭代过程中的动态变化。
摘要由CSDN通过智能技术生成

后验克拉美罗下界
对于一个任意未知参数向量a,通过观测向量b,它的后验克拉罗美罗下界(PCLRB)可以表达为:
E a , b { [ a ^ ( b ) − a ] [ a ^ ( b ) − a ] T } ⪰ J B − 1 \mathbb{E}_{a,b}\left\{[\widehat{a}\left(b\right)-a]\left[\widehat{a}\left(b\right)-a\right]^{\mathrm{T}}\right\}\succeq J_{\mathrm{B}}^{-1} Ea,b{[a (b)a][a (b)a]T}JB1
J B J_{\mathrm{B}} JB是贝叶斯信息矩阵(BFIM), ⪰ \succeq 表示广义不等式. E a , b \mathbb{E}_{a,b} Ea,b表示期望求取符号。BFIM可以通过联合概率密度函数 p a , b ( a , b ) p_{\boldsymbol{a},\boldsymbol{b}}\left(\boldsymbol{a},\boldsymbol{b}\right) pa,b(a,b)来计算
J B = − E [ Δ a a log ⁡ p a , b ( a , b ) ] J_{\mathrm{B}}=-\mathbb{E}\left[\Delta_{a}^{a}\log p_{a,b}\left(a,b\right)\right] JB=E[Δaalogpa,b(a,b)]
其中 Δ b a = ∇ a [ ∇ b T ] \Delta_b^a=\nabla_a\begin{bmatrix}\nabla_b^\mathrm{T}\end{bmatrix} Δba=a[bT], 而 ∇ \nabla 是梯度算子。
而根据 p a , b ( a , b ) = p b ∣ a ( b ∣ a ) p a ( a ) p_{\boldsymbol{a},\boldsymbol{b}}\left(\boldsymbol{a},\boldsymbol{b}\right)=p_{\boldsymbol{b}\mid\boldsymbol{a}}\left(\boldsymbol{b}|\boldsymbol{a}\right)p_{\boldsymbol{a}}\left(\boldsymbol{a}\right) pa,b(a,b)=pba(ba)pa(a)可以得到
J B = J D + J P J_{\mathrm{B}}=J_{\mathrm{D}}+J_{\mathrm{P}} JB=JD+JP
其中, J P J_{\mathrm{P}} JP是和先验信息有关的Fisher信息矩阵, J Z J_{\mathrm{Z}} JZ是关于目标状态和量测数据有关的Fisher信息矩阵
J D = − E a [ Δ a a p b ∣ a ( b ∣ a ) ] J P = − E a [ Δ a a p a ( a ) ] } \left.\begin{array}{l}\boldsymbol{J}_{\mathrm{D}}=-\mathbb{E}_{a}\left[\Delta_{a}^{a}p_{\boldsymbol{b}|\boldsymbol{a}}\left(\boldsymbol{b}|\boldsymbol{a}\right)\right]\\\boldsymbol{J}_{\mathrm{P}}=-\mathbb{E}_{a}\left[\Delta_{a}^{a}p_{\boldsymbol{a}}\left(\boldsymbol{a}\right)\right]\end{array}\right\} JD=Ea[Δaapba(ba)]JP=Ea[Δaapa(a)]}
根据观测数据的更新迭代公式:
{ J P ( x k q ) = − E x k q [ ∇ x k q x k q ln ⁡ p ( x k q ) ] = [ D k − 1 22 − D k − 1 21 ( J ( x k − 1 q ) + D k − 1 11 ) − 1 D k − 1 12 ] J D ( x k q ) = − E x k q , z k q [ ∇ x k q x k q ln ⁡ p ( z k q ∣ x k q ) ] \begin{cases}\mathrm{J}_\mathrm{P}\left(\mathrm{x}_k^q\right)&=-\mathrm{E}_{\mathbf{x}_k^q}\left[\nabla_{\mathbf{x}_k^q}^{\mathbf{x}_k^q}\ln p\left(\mathbf{x}_k^q\right)\right]\\&=\left[\mathrm{D}_{k-1}^{22}-\mathrm{D}_{k-1}^{21}\left(\mathrm{J}\left(\mathrm{x}_{k-1}^q\right)+\mathrm{D}_{k-1}^{11}\right)^{-1}\mathrm{D}_{k-1}^{12}\right]\\\mathrm{J}_\mathrm{D}\left(\mathrm{x}_k^q\right)&=-\mathrm{E}_{\mathbf{x}_k^q,\mathbf{z}_k^q}\left[\nabla_{\mathbf{x}_k^q}^{\mathbf{x}_k^q}\ln p\left(\left.\mathbf{z}_k^q\right|\mathbf{x}_k^q\right)\right]&\end{cases} JP(xkq)JD(xkq)=Exkq[xkqxkqlnp(xkq)]=[Dk122Dk121(J(xk1q)+Dk111)1Dk112]=Exkq,zkq[xkqxkqlnp(zkqxkq)]
{ D k − 1 11 = − E x k − 1 q , x k q [ ∇ x k − 1 q x k − 1 q ln ⁡ p ( x k q ∣ x k − 1 q ) ] D k − 1 12 = − E x k − 1 q , x k q [ ∇ x k q x k − 1 q ln ⁡ p ( x k q ∣ x k − 1 q ) ] = ( D k − 1 21 ) T . D k − 1 22 = − E x k − 1 q , x k q [ ∇ x k q x k q ln ⁡ p ( x k q ∣ x k − 1 q ) ] \begin{cases}\mathrm{D}_{k-1}^{11}=-\mathrm{E}_{\mathbf{x}_{k-1}^q,\mathbf{x}_{k}^q}\left[\nabla_{\mathbf{x}_{k-1}^q}^{\mathbf{x}_{k-1}^q}\ln p\left(\mathbf{x}_{k}^q\left|\mathbf{x}_{k-1}^q\right.\right)\right]\\\mathrm{D}_{k-1}^{12}=-\mathrm{E}_{\mathbf{x}_{k-1}^q,\mathbf{x}_{k}^q}\left[\nabla_{\mathbf{x}_{k}^q}^{\mathbf{x}_{k-1}^q}\ln p\left(\mathbf{x}_{k}^q\left|\mathbf{x}_{k-1}^q\right.\right)\right]=\left(\mathrm{D}_{k-1}^{21}\right)^\mathrm{T}.\\\mathrm{D}_{k-1}^{22}=-\mathrm{E}_{\mathbf{x}_{k-1}^q,\mathbf{x}_{k}^q}\left[\nabla_{\mathbf{x}_{k}^q}^{\mathbf{x}_{k}^q}\ln p\left(\mathbf{x}_{k}^q\left|\mathbf{x}_{k-1}^q\right.\right)\right]\end{cases} Dk111=Exk1q,xkq[xk1qxk1qlnp(xkq xk1q)]Dk112=Exk1q,xkq[xkqxk1qlnp(xkq xk1q)]=(Dk121)T.Dk122=Exk1q,xkq[xkqxkqlnp(xkq xk1q)]
化简:
J P ( x k q ) = ( Q q + F q J − 1 ( x k − 1 q ) F q T ) − 1 . \mathbf{J}_\mathrm{P}\left(\mathbf{x}_k^q\right)=\left(\mathbf{Q}_q+\mathbf{F}_q\mathbf{J}^{-1}\left(\mathbf{x}_{k-1}^q\right)\mathbf{F}_q^\mathrm{T}\right)^{-1}. JP(xkq)=(Qq+FqJ1(xk1q)FqT)1.
J D ( x k q ) = E x k q [ ( H k q ) T ( R ^ k q ( θ k q ) ) − 1 H k q ] J_{\mathrm{D}}\left(x_{k}^{q}\right)=\mathbb{E}_{\mathbf{x}_k^q}\left[(\mathbf{H}_k^q)^{\mathrm{T}}\left(\hat{\mathrm{R}}_k^q\left(\theta_{k}^{q}\right)\right)^{-1}\mathbf{H}_k^q\right] JD(xkq)=Exkq[(Hkq)T(R^kq(θkq))1Hkq]

  • 0
    点赞
  • 5
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
### 回答1: TDOA(Time Difference of Arrival)是一种用于测量信号到达时间差的技术。它的克拉美罗下界是一种基于统计学原理的理论界限,用于评估在给定条件下实际测量结果的最佳性能。 TDOA的克拉美罗下界是通过利用信号到达时间差的方差以及信号的频率信息来计算得出的。它可以表达为:克拉美罗下界 = 1 / (2πfdτ),其中f是信号的频率,d是信号到达时间差,τ是传感器测量误差的标准差。 这个界限告诉我们,无论使用何种算法或具体的实现方式,基于给定的测量误差和信号频率,我们所能达到的最佳测量精度是受到一定限制的。换句话说,无论我们如何努力,我们无法超越克拉美罗下界,获得更好的测量结果。 克拉美罗下界的计算是一种理论推导,并不代表实际测量结果。实际测量结果可能受到多种因素的影响,如噪声、环境信号衰减等。因此,在实际应用中,我们需要考虑到这些因素的影响,并尽可能减小它们对测量结果的影响。 总之,TDOA的克拉美罗下界提供了一种理论界限,帮助我们评估测量结果的最佳性能。虽然实际结果可能会受到多种因素的影响,但克拉美罗下界提供了一个参考,帮助我们了解在给定条件下所能达到的测量精度。 ### 回答2: TDOA是一种用于定位和测量信号到达时间差的技术。克拉美罗下界是指在给定信号到达时间差的情况下,可以实现的最佳定位准确性。 在TDOA技术中,通过在不同位置上设置多个接收器,测量信号到达每个接收器的时间差。通过比较这些时间差,可以计算出信号源相对于这些接收器的位置。克拉美罗下界是用来衡量定位准确性的指标。 克拉美罗下界是基于接收器之间的几何关系和信号到达时间差的方差计算得出的。当所有接收器之间的间距和信号到达时间差的方差都已知时,克拉美罗下界可以告诉我们在这种情况下最佳的定位准确性。 具体来说,克拉美罗下界告诉我们,当信号源位置在克拉美罗下界的内部时,我们可以通过TDOA技术实现高精度的定位。而当信号源位置在克拉美罗下界的外部时,定位准确性将会降低。 因此,克拉美罗下界在TDOA定位中具有重要的意义,可以帮助我们评估和优化定位系统的性能。通过合理设计接收器的布局和优化信号到达时间差的测量精度,我们可以接近克拉美罗下界,实现更准确的信号定位。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值