迈向可持续人工智能:通过拍卖实现云边缘系统中的联邦学习需求响应

本文探讨了在云边缘系统中,通过拍卖机制设计的联邦学习方法来解决AI工作负载的能源消耗与模型准确性之间的权衡。作者提出了一种基于非线性规划和在线算法的策略,以优化长期社会福利,有效处理动态到达的任务和实现市场效率。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

(原文:Toward Sustainable AI: Federated Learning Demand Response in Cloud-Edge Systems via Auctions)

摘要:

云边缘系统时紧急需求响应EDR的重要参与者,有助于维持电网稳定和供需平衡。然而,UI这用户越来越多的在云边缘系统中执行人工智能工作负载,现有的ERD管理并不是针对al工作负载而设计的,因此面临着能源消耗和al模型准确性之间复杂权衡的关键挑战。在本文中,针对联邦学习,设计了一种基于拍卖的方法来克服所有这些挑战。首先制定了一个用于长期社会福利优化的非线性混合整数规划。然后,提出了一种算法,可以生成候选训练计划,将原始问题重新表述为新的计划选择问题,并使用基于原始对偶的在线算法和仔细嵌入的支付设计来解决这个新问题。

介绍:

通常在EDR期间,电网向云边系统发送带有时变能量上线的信号,后者必须将其能耗降低到上线以下,这有助于保证电力系统的稳定性和供需平衡。由于每个用户只考虑自己工作负载的执行情况,而不考虑整个系统的能耗或EDR,这个问题称之为“分割激励”。

解决分割激励可以采用基于拍卖的方式,也就是说,云边缘运营商充当拍卖师,每个用户充当投标人,以自己的估价提交投标,以执行其工作负载或任务。然后,拍卖师根据EDR策略选择中标,并安排相应任务的执行。拍卖可以让用户了解EDR,避免云边缘运营商的错误定价,增加云边缘运营商的利润,并通过实时需求和供应实现市场效率和敏捷性。

贡献:

通过扩展和过滤候选调度并“吸收”非线性,将FL

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值