(原文:Toward Sustainable AI: Federated Learning Demand Response in Cloud-Edge Systems via Auctions)
摘要:
云边缘系统时紧急需求响应EDR的重要参与者,有助于维持电网稳定和供需平衡。然而,UI这用户越来越多的在云边缘系统中执行人工智能工作负载,现有的ERD管理并不是针对al工作负载而设计的,因此面临着能源消耗和al模型准确性之间复杂权衡的关键挑战。在本文中,针对联邦学习,设计了一种基于拍卖的方法来克服所有这些挑战。首先制定了一个用于长期社会福利优化的非线性混合整数规划。然后,提出了一种算法,可以生成候选训练计划,将原始问题重新表述为新的计划选择问题,并使用基于原始对偶的在线算法和仔细嵌入的支付设计来解决这个新问题。
介绍:
通常在EDR期间,电网向云边系统发送带有时变能量上线的信号,后者必须将其能耗降低到上线以下,这有助于保证电力系统的稳定性和供需平衡。由于每个用户只考虑自己工作负载的执行情况,而不考虑整个系统的能耗或EDR,这个问题称之为“分割激励”。
解决分割激励可以采用基于拍卖的方式,也就是说,云边缘运营商充当拍卖师,每个用户充当投标人,以自己的估价提交投标,以执行其工作负载或任务。然后,拍卖师根据EDR策略选择中标,并安排相应任务的执行。拍卖可以让用户了解EDR,避免云边缘运营商的错误定价,增加云边缘运营商的利润,并通过实时需求和供应实现市场效率和敏捷性。
贡献:
通过扩展和过滤候选调度并“吸收”非线性,将FL