(原文:Joint Participation Incentive and Network Pricing Design for Federated Learning)
摘要:由于当大量用户通过联邦学习训练大型机器学习模型时,动态变化且通常繁重的通信开销会给网络运营商带来巨大压力。运营商可能会选择动态改变网络价格作为响应,这最终将影响服务器和用户的收益。本文考虑了参与激励(用于鼓励用户对联邦学习的贡献)和网络定价(用于管理网络资源)的联合设计的问题。由于用户的隐私信息异构和多维决策,多阶段博弈第一阶段的优化问题是非凸的。尽管如此,仍能够在参与者的纵向和横向交互结构下,通过对约束、变量和函数的适当变换,分析得出相应的最优契约和定价机制。最后表明垂直结构比水平结构效果要好,因为它避免了服务器和网络运营商之间的利益不一致。
系统模型:
①联邦学习过程:
模型训练分布在i个用户上并由中央服务器协调,模型训练期间用户和服务器之间的通信由移动网络运营商支持。
一个数据为(xa,ya),其中xa为输入,ya为标签。将预测值记为ŷ(xa; w),预测值和真值标签的预测损失函数fa(w),如果用户i使用数据大小为Si的局部数据集si来训练模型,则用户i的损失函数为其所有数据的平均预测损失。