世界是有限的还是无限的?

茶余饭后与朋友交谈突然谈到这个问题,世界这里就代表我们所说的宇宙。宇宙到底是有限的还是无限的。如果用严格的数学思维来证明无非就是两种情况,用假设验证法证明。假设宇宙是有限的,那么我们肯定能找到一个边界,宇宙的边界,不管我们找不找得到,这个边界是存在在那里的,或许是一堵墙或许是其他的什么东西。既然有边界,我们一定就能冲破边界,就算冲不破边界,那边界之外的东西也是真实存在的,就放在那里的,那么这个边界就称不上是宇宙的边界,所以边界之外还要继续扩充,假设扩充完这个边界,我们到达了另一层的边界,那么这个边界之外依然有东西,所以导致的现象就是层层递归,无穷无尽,到任何时候,都不能算是到达了真正的边界,因为边界之外还有东西,而且边界本身就是个东西,可能很厚可能很薄或者其它。


假设宇宙是无限的,那么就真的是有神存在了,世界上有真正意义上无限,而又能叫东西的东西的吗?无限不是数不过来,我们通常喜欢叫数不过来的东西叫无限,但是数不过来的东西,它也是有限的,只是数量大到难以计数而已,它还是有限的,不管有没有人去数到底有多少个,它的数量本来就是真实存在的,不以人的计数为转移的。而真正意义上的无限就是虚无,到最后来讲,也是大家都不存在啊。例如,一个无理数化成小数的长度是无限的,如果你想在坐标轴上画出这个数的具体位置,你是做不到的,因为你没法落笔,你没法决定终点落在哪里,因为它是无限的,是永远有下一位的,你任何一个落笔都与它有误差,所以你无法落笔。既然你无法落笔,那么这个东西不能被造出来,它只能存在于概念中,它只能是虚无的。除非你说我一直在努力着靠近终点,但是又永远达不到终点,如果宇宙也是无限的,那就很没法理解了,一直靠近着终点而又达不到终点是一个动态的过程,因为终点根本就不存在,离终点最近的最外侧的星球是会一直凭空的产生下去吗?从无到有这是个什么鬼?这貌似也是不合理,能量守恒什么的,恐怕都将被推翻,除非这个宇宙的能量也是无限的,能量也不需要源头,它从最开始的时候就这么霸道的有着,而且源源不断着,这个境界谁能做到呢?答案只有一个神。任何的星球都是些土,石头之类的物质,虽然其化学成分很复杂但是是在那里存在的,你可以不用管具体什么成分。一些土,石头之类的就这样从无到有突然出现吗?答案也是不可能的,所以宇宙是无限的也不正确。现在就很棘手了,宇宙既不是有限的也不是无限的,那宇宙是什么的?难道世界上还有种存在是介于有限和无限之间的吗?或者世界上还有一种存在即是有限又是无限吗?我觉得外国人称之为神,可能并不是真觉得这就是神干的,而只是他们无法描述这是个什么鬼,而说的一个语气词而已“God”。就像我们说这是个什么鬼,但我们知道这不是鬼干的。走到这一步,我也没办法继续追究,完全可以称之为fucking problem.


这让我联想到勾股定理,勾股定理是正确的吗?对此我也表示怀疑,因为根号2是一个无理数,而如果我们根据勾股定理的原理是可以以0误差的精度画出根号2的长度的,你只需要画一个边长为1的严格意义上的正方形,然后连接对角线,对角线的长度就是根号2了,因为边长的起点和终点都是0误差的,因为1是有理数,起点和终点是唯一确定的,而夹角90度也是唯一确定的,因为是有理数,我们只要连接两条邻边的起点和终点不就是根号2了吗?然而上一段我们又说过,一个无理数,就像是根号2,你在画它的时候是不能够落笔的,因为它没有终点,你唯一能做的是近似,然而勾股定理给出的是我们连接了两个非常确定的起点和终点,起点和终点都固定的线段当然是一个0误差的准确值了。这就很奇怪了,一个无法落笔的根号2,一个没有终点的根号2,竟然能通过勾股定理0误差的画出来。要么是勾股定理错了,只能是近似意义上的准确,要么就是无限的东西就是有限的,无限的长度既画不出来,也能被画出来。如果勾股定理错了,那么整个与三角形相关的几何学就错了,因为勾股定理错了的话,余弦定理就错了,其他边角关系的定理都错了,所有与角度相关的几何学出现问题,这就是矛盾,这就是疯狂,这就是虚无,这就是神。


欢迎讨论,zhyxhys@163.com

qq,2087349377


阅读更多 登录后自动展开
想对作者说点什么? 我来说一句

没有更多推荐了,返回首页