matplotlib.pyplot中的scatter入门级用法

简单介绍matplotlib.pyplot中scatter的参数及用法。

matplotlib.pylot.scatter(xys=Nonec=Nonemarker=Nonecmap=Nonenorm=Nonevmin=Nonevmax=None

在数据可视化的过程中,经常会需要在同一图表中展示不同类型的图表以进行比较分析。Matplotlib中的pyplot模块提供了强大的绘图功能,可以轻松实现这一需求。接下来,我们将通过一个示例展示如何结合折线图、散点图和条形图在一个图表中展示数据。 参考资源链接:[Python数据可视化:Matplotlib pyplot入门教程](https://wenku.csdn.net/doc/2k8noa5u4m?spm=1055.2569.3001.10343) 首先,确保你已经安装了numpy和matplotlib库。可以通过在PyCharm的终端中运行以下命令来安装: ```bash pip install numpy matplotlib ``` 然后,我们可以使用以下Python代码来绘制复合图表: ```python import numpy as np import matplotlib.pyplot as plt # 创建数据 x = np.linspace(0, 10, 100) y1 = np.sin(x) y2 = np.cos(x) categories = ['Category A', 'Category B', 'Category C', 'Category D', 'Category E'] values = [10, 20, 15, 25, 30] # 创建图形和轴 fig, ax1 = plt.subplots() # 绘制折线图 ax1.plot(x, y1, 'r-') # 红色折线图 ax1.set_xlabel('X-axis') ax1.set_ylabel('Line Y1', color='r') # 使用相同的x轴,创建第二个y轴 ax2 = ***inx() ax2.plot(x, y2, 'b-') # 蓝色折线图 ax2.set_ylabel('Line Y2', color='b') # 绘制散点图 ax1.scatter(x, y1, color='g') # 绿色散点图 # 绘制条形图 y = np.array(values) x = np.arange(len(categories)) ax2.bar(x, y, width=0.5, color='k', align='center') ax2.set_xticks(x) ax2.set_xticklabels(categories) # 添加图表标题和图例 plt.title('Combined Line, Scatter and Bar Chart') fig.legend(loc='upper right') # 显示图表 plt.show() ``` 在这段代码中,我们首先导入必要的库并创建了一些模拟数据。然后,我们创建了一个图表和两个坐标轴对象。在第一个坐标轴上,我们绘制了一个红色的折线图和绿色的散点图。接着,我们使用`twinx()`方法来创建第二个y轴,并在上面绘制了一个蓝色的折线图。最后,我们在第二个y轴上绘制了一个条形图,并调整了图表的标签、标题和图例,使其更易于理解。 通过这样的方式,我们可以在一个图表中展示多种数据关系,帮助进行更加直观和深入的数据分析。如果你希望进一步学习Matplotlib的其他高级功能,比如3D绘图、动画、图像处理等,强烈推荐参考《Python数据可视化:Matplotlib pyplot入门教程》。这本书详细介绍了Matplotlib的各种用法,是你深入掌握Matplotlib不可多得的学习资源。 参考资源链接:[Python数据可视化:Matplotlib pyplot入门教程](https://wenku.csdn.net/doc/2k8noa5u4m?spm=1055.2569.3001.10343)
评论 4
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值