Datewhale爬虫学习——Task2

一、Beautiful Soup库

1.Beautiful Soup库入门
学习beautifulsoup基础知识。

使用beautifulsoup解析HTML页面。

Beautiful Soup 是一个HTML/XML 的解析器,主要用于解析和提取 HTML/XML 数据。
它基于HTML DOM 的,会载入整个文档,解析整个DOM树,因此时间和内存开销都会大很多,所以性能要低于lxml。
BeautifulSoup 用来解析 HTML 比较简单,API非常人性化,支持CSS选择器、Python标准库中的HTML解析器,也支持 lxml 的 XML解析器。
虽然说BeautifulSoup4 简单容易比较上手,但是匹配效率还是远远不如正则以及xpath的,一般不推荐使用,推荐正则的使用。
第一步:pip install beautifulsoup4 ,万事开头难,先安装 beautifulsoup4,安装成功后就完成了第一步。

第二步:导入from bs4 import BeautifulSoup

第三步:创建 Beautiful Soup对象 soup = BeautifulSoup(html,‘html.parser’)

2. Beautiful Soup库的基本元素
Beautiful Soup库的理解: Beautiful Soup库是解析、遍历、维护“标签树”的功能库,对应一个HTML/XML文档的全部内容

BeautifulSoup类的基本元素:

Tag 标签,最基本的信息组织单元,分别用<>和</>标明开头和结尾;
Name 标签的名字,

的名字是’p’,格式:.name;
Attributes 标签的属性,字典形式组织,格式:.attrs;
NavigableString 标签内非属性字符串,<>…</>中字符串,格式:.string;
Comment 标签内字符串的注释部分,一种特殊的Comment类型;
# 导入bs4库
from bs4 import BeautifulSoup
import requests # 抓取页面

r = requests.get('https://python123.io/ws/demo.html') # Demo网址
demo = r.text  # 抓取的数据

# 解析HTML页面
soup = BeautifulSoup(demo, 'html.parser')  # 抓取的页面数据;bs4的解析器
# 有层次感的输出解析后的HTML页面
print(soup.prettify())

基于bs4库的HTML内容遍历方法:
HTML基本格式:<>…</>构成了所属关系,形成了标签的树形结构

标签树的下行遍历
.contents 子节点的列表,将所有儿子节点存入列表
.children 子节点的迭代类型,与.contents类似,用于循环遍历儿子节点
.descendants 子孙节点的迭代类型,包含所有子孙节点,用于循环遍历
标签树的上行遍
.parent 节点的父亲标签
.parents 节点先辈标签的迭代类型,用于循环遍历先辈节点
标签树的平行遍历
.next_sibling 返回按照HTML文本顺序的下一个平行节点标签
.previous_sibling 返回按照HTML文本顺序的上一个平行节点标签
.next_siblings 迭代类型,返回按照HTML文本顺序的后续所有平行节点标签
.previous_siblings 迭代类型,返回按照HTML文本顺序的前续所有平行节点标签
详见:https://www.cnblogs.com/mengxiaoleng/p/11585754.html#_label0

#标签树的下行遍历
print(soup.contents)# 获取整个标签树的儿子节点
print(soup.body.content)#返回标签树的body标签下的节点
print(soup.head)#返回head标签

for child in soup.body.children:#遍历儿子节点
    print(child)
for child in soup.body.descendants:#遍历子孙节点
    print(child)


#标签树的上行遍历
soup.title.parent
soup.parent

for parent in soup.a.parents: # 遍历先辈的信息
    if parent is None:
        print(parent)
    else:
        print(parent.name)


#标签树的平行遍历
#标签树的平行遍历是有条件的
#平行遍历发生在同一个父亲节点的各节点之间
#标签中的内容也构成了节点
print(soup.a.next_sibling)#a标签的下一个标签
print(soup.a.next_sibling.next_sibling)#a标签的下一个标签的下一个标签
print(soup.a.previous_sibling)#a标签的前一个标签
print(soup.a.previous_sibling.previous_sibling)#a标签的前一个标签的前一个标签


for sibling in soup.a.next_siblings:#遍历后续节点
    print(sibling)

for sibling in soup.a.previous_sibling:#遍历之前的节点
    print(sibling)    
        

#基于bs4库的HTML内容的查找方法
# name : 对标签名称的检索字符串
soup.find_all('a')
soup.find_all(['a', 'p'])
# attrs: 对标签属性值的检索字符串,可标注属性检索
soup.find_all("p","course")
soup.find_all(id="link") # 完全匹配才能匹配到
#  recursive: 是否对子孙全部检索,默认True
soup.find_all('p',recursive=False)
# string: <>…</>中字符串区域的检索字符串
soup.find_all(string = "Basic Python") # 完全匹配才能匹配到

实战:中国大学排名定向爬取
爬取url:http://www.zuihaodaxue.cn/zuihaodaxuepaiming2019.html
爬取思路:
从网络上获取大学排名网页内容
提取网页内容中信息到合适的数据结构(二维数组)-排名,学校名称,总分
利用数据结构展示并输出结果

import requests
from bs4 import BeautifulSoup
import bs4
# 获取网页链接
def getHTML(url):
    headers = {'user-agent':'Mozilla/5.0 (Windows NT 10.0; WOW64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/79.0.3945.130 Safari/537.36'}
    
    r = requests.get(url, headers = headers)
    r.encoding = r.apparent_encoding
    text = r.text
    return text
# 大学排名列表
def getUlist(html,ulist):
    
    soup = BeautifulSoup(html, 'html.parser')
    #print(soup)
    for tr in soup.find('tbody').children:
        if isinstance(tr, bs4.element.Tag):
            tds = tr('td')
            ulist.append([tds[0].string,tds[1].string,tds[3].string])
    
        #ulist.append(tds)
    return ulist


def main():
    ulist = []
    url = 'http://www.zuihaodaxue.cn/zuihaodaxuepaiming2019.html'
    html = getHTML(url)
    list = getUlist(html, ulist)
    #tplt = '{0:^10}\t{1:{3}^10}\t{2:^10}'
    print("{0:^10}\t{1:{3}^10}\t{2:^10}".format('排名','学校名称','总分',chr(12288)))
    for i in range(len(list)):
        u = list[i]
        #print(u)
        print("{0:^10}\t{1:{3}^10}\t{2:^10}".format(u[0],u[1],u[2],chr(12288)))
    
main()  

这个过程中,有个问题就是英文空格跟中文空格不同,所以对齐方式有点问题。

二、Xpath使用

Xpath常用的路径表达式:
XPath即为XML路径语言(XML Path Language),它是一种用来确定XML文档中某部分位置的语言。
在XPath中,有七种类型的节点:元素、属性、文本、命名空间、处理指令、注释以及文档(根)节点。
XML文档是被作为节点树来对待的。
XPath使用路径表达式在XML文档中选取节点。节点是通过沿着路径选取的。下面列出了最常用的路径表达式:
在这里插入图片描述
详细学习:https://www.cnblogs.com/gaojun/archive/2012/08/11/2633908.html

** 使用lxml解析**

在这里插入图片描述
实战:爬取丁香园-用户名和回复内容
爬取思路:
获取url的html
lxml解析html
利用Xpath表达式获取user和content
保存爬取的内容

# 导入库
from lxml import etree
import requests

url = "http://www.dxy.cn/bbs/thread/626626#626626"

# 获取url的html
req = requests.get(url)
html = req.text
# html

#lxml解析html
tree = etree.HTML(html) 
tree

#利用Xpath表达式获取user和content(完成xpath的语句)
user = tree.xpath('')
# print(user)
content = tree.xpath('')

#保存爬取的内容
results = []
for i in range(0, len(user)):
    # print(user[i].strip()+":"+content[i].xpath('string(.)').strip())
    # print("*"*80)
    # 因为回复内容中有换行等标签,所以需要用string()来获取数据
    results.append(user[i].strip() + ":  " + content[i].xpath('string(.)').strip())

# 打印爬取的结果
for i,result in zip(range(0, len(user)),results):
    print("user"+ str(i+1) + "-" + result)
    print("*"*100)

三、正则表达式

为什么使用正则表达式?
典型的搜索和替换操作要求您提供与预期的搜索结果匹配的确切文本。虽然这种技术对于对静态文本执行简单搜索和替换任务可能已经足够了,但它缺乏灵活性,若采用这种方法搜索动态文本,即使不是不可能,至少也会变得很困难。
在这里插入图片描述
使用正则表达式的优势是什么?
正则表达式是用来简洁表达一组字符串的表达式
正则表达式是一种通用的字符串表达框架
正则表达式是一种针对字符串表达“简洁”和“特征”思想的工具
正则表达式可以用来判断某字符串的特征归属

正则表达式在文本处理中十分常用:
同时查找或替换一组字符串
匹配字符串的全部或部分(主要)

正则表达式语法
正则表达式语法由字符和操作符构成
在这里插入图片描述
正则表达式re库的使用
调用方式:import re
re库采用raw string类型表示正则表达式,表示为:r’text’,raw string是不包含对转义符再次转义的字符串;
在这里插入图片描述
实战:淘宝商品比价定向爬虫
爬取网址:https://s.taobao.com/search?q=书包&js=1&stats_click=search_radio_all%25
爬取思路:
提交商品搜索请求,循环获取页面
对于每个页面,提取商品名称和价格信息
将信息输出到屏幕上

# 导入包
import requests
import re

#提交商品搜索请求,循环获取页面
def getHTMLText(url):
    """
    请求获取html,(字符串)
    :param url: 爬取网址
    :return: 字符串
    """
    try:
        # 添加头信息,
        kv = {
            'cookie': 'thw=cn; v=0; t=ab66dffdedcb481f77fd563809639584; cookie2=1f14e41c704ef58f8b66ff509d0d122e; _tb_token_=5e6bed8635536; cna=fGOnFZvieDECAXWIVi96eKju; unb=1864721683; sg=%E4%B8%8B3f; _l_g_=Ug%3D%3D; skt=83871ef3b7a49a0f; cookie1=BqeGegkL%2BLUif2jpoUcc6t6Ogy0RFtJuYXR4VHB7W0A%3D; csg=3f233d33; uc3=vt3=F8dBy3%2F50cpZbAursCI%3D&id2=UondEBnuqeCnfA%3D%3D&nk2=u%2F5wdRaOPk21wDx%2F&lg2=VFC%2FuZ9ayeYq2g%3D%3D; existShop=MTU2MjUyMzkyMw%3D%3D; tracknick=%5Cu4E36%5Cu541B%5Cu4E34%5Cu4E3F%5Cu5929%5Cu4E0B; lgc=%5Cu4E36%5Cu541B%5Cu4E34%5Cu4E3F%5Cu5929%5Cu4E0B; _cc_=WqG3DMC9EA%3D%3D; dnk=%5Cu4E36%5Cu541B%5Cu4E34%5Cu4E3F%5Cu5929%5Cu4E0B; _nk_=%5Cu4E36%5Cu541B%5Cu4E34%5Cu4E3F%5Cu5929%5Cu4E0B; cookie17=UondEBnuqeCnfA%3D%3D; tg=0; enc=2GbbFv3joWCJmxVZNFLPuxUUDA7QTpES2D5NF0D6T1EIvSUqKbx15CNrsn7nR9g%2Fz8gPUYbZEI95bhHG8M9pwA%3D%3D; hng=CN%7Czh-CN%7CCNY%7C156; mt=ci=32_1; alitrackid=www.taobao.com; lastalitrackid=www.taobao.com; swfstore=97213; x=e%3D1%26p%3D*%26s%3D0%26c%3D0%26f%3D0%26g%3D0%26t%3D0%26__ll%3D-1%26_ato%3D0; uc1=cookie16=UtASsssmPlP%2Ff1IHDsDaPRu%2BPw%3D%3D&cookie21=UIHiLt3xThH8t7YQouiW&cookie15=URm48syIIVrSKA%3D%3D&existShop=false&pas=0&cookie14=UoTaGqj%2FcX1yKw%3D%3D&tag=8&lng=zh_CN; JSESSIONID=A502D8EDDCE7B58F15F170380A767027; isg=BMnJJFqj8FrUHowu4yKyNXcd2PXjvpa98f4aQWs-RbDvsunEs2bNGLfj8BYE6lWA; l=cBTDZx2mqxnxDRr0BOCanurza77OSIRYYuPzaNbMi_5dd6T114_OkmrjfF96VjWdO2LB4G2npwJ9-etkZ1QoqpJRWkvP.; whl=-1%260%260%261562528831082',
            'user-agent': 'Mozilla/5.0'
        }
        r = requests.get(url, timeout=30, headers=kv)
        # r = requests.get(url, timeout=30)
        # print(r.status_code)
        r.raise_for_status()
        r.encoding = r.apparent_encoding
        return r.text
    except:
        return "爬取失败"
# 对于每个页面,提取商品名称和价格信息(完成正则表达式语句)
def parsePage(glist, html):
    '''
    解析网页,搜索需要的信息
    :param glist: 列表作为存储容器
    :param html: 由getHTMLText()得到的
    :return: 商品信息的列表
    '''
    try:
        # 使用正则表达式提取信息
        #商品价格
        price_list = re.findall(r'', html)
        #商品名称
        name_list = re.findall(r'', html)
        for i in range(len(price_list)):
            price = eval(price_list[i].split(":")[1])  #eval()在此可以去掉""
            name = eval(name_list[i].split(":")[1])
            glist.append([price, name])
    except:
        print("解析失败")

#将信息输出到屏幕上
def printGoodList(glist):
    tplt = "{0:^4}\t{1:^6}\t{2:^10}"
    print(tplt.format("序号", "商品价格", "商品名称"))
    count = 0
    for g in glist:
        count = count + 1
        print(tplt.format(count, g[0], g[1]))

# 根据页面url的变化寻找规律,构建爬取url
goods_name = "书包"  # 搜索商品类型
start_url = "https://s.taobao.com/search?q=" + goods_name
info_list = []
page = 3  # 爬取页面数量

count = 0
for i in range(page):
    count += 1
    try:
        url = start_url + "&s=" + str(44 * i)
        html = getHTMLText(url)  # 爬取url
        parsePage(info_list, html) #解析HTML和爬取内容
        print("\r爬取页面当前进度: {:.2f}%".format(count * 100 / page), end="")  # 显示进度条
    except:
        continue

printGoodList(info_list)
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值