现在是[人工智能]兴起的时代,到处都在谈人工智能。今天就从[人工智能]的角度给你的颜值打个分。
在这里,我会把整个实现过程写出来。
先介绍一下用到了哪些东西(用[Python]
- 百度的人脸识别api
- Flask
- PIL
- requests
操作很简单,主要是利用的百度的人脸识别库,然后自己做了一个简单的图片上传和图片处理以及信息提取加工。
百度的人脸识别api申请的地址,需要有百度账号: 传送门
然后在控制台创建一个应用即可:
在应用列表中可以看到你创建的应用:
通过查看百度的人脸识别的文档,我们就可以写代码了。
想要使用百度的api,申请只是第一步,后面还需要获取access_token,文档给出的方法如下:
官网给的方法相对比较繁琐,我使用request改写了一下如下(注意把[url]里面的Key换成你申请的)。
def get_access_token:
url=‘https://aip.baidubce.com/[oauth]/2.0/token?grant_type=client_credentials&grant_type=client_credentials&’
‘client_id=【你申请的API Key】&client_[secret]=【你申请的[Secret]Key】’
data = requests.get(url, headers).[json]
return data[‘access_token’]
拿到这个key之后,就可以进行下一步的请求了,继续看文档:
文档中说要使用post方法进行请求,请求的url给出了,url的参数是上面获取到的access_token,请求的头部要包含”Content-Type”: “application/json”
下面是主体部分,也就是对上传的图片的要求,以及你想要获取的内容的一下说明:
文档说图片的大小不能大于10M,上传的类型包含三种,一种是URL。还有就是图片通过[Base64]编码后得到的编码信息。其中face_field是你想要返回的内容等等,文档里面说的都很清楚,这里不做过多介绍。
首先,我们不采用图片url的方式,我们直接使用对图片进行base64编码的形式进行处理。编码的过程如下:
with open(’[static]/’ + [filename], ‘rb’) as f:
base = base64.b64encode(f.read)
image = str(base, encoding=‘utf-8’)
请求的参数构造如下:
[params] = {
‘image’: image,
‘image_type’: imageType,
‘face_field’: ‘age,beauty,[gender],face_type,face_shape,[expression],landmark’
}
其中image是我们上面编码过的结果,imageType是BASE64,face_field是我们想要它返回给我们的内容,包括年龄,颜值,性别,人物类型,脸型,表情,检测的点。最后,如果你的时间不是很紧张,并且又想快速的提高,最重要的是不怕吃苦,建议你可以联系维:762459510 ,那个真的很不错,很多人进步都很快,需要你不怕吃苦哦!大家可以去添加上看一下~
然后通过返回给我们的数据,提取(完整代码如下)相应的内容:
def get_content(filename):
request_url = “https://aip.baidubce.com/rest/2.0/face/v3/detect?access_token=”+get_access_token
with open(‘static/’ + filename, ‘rb’) as f:
base = [base64].b64encode(f.read)
image = str(base, encoding=‘utf-8’)
params = {
‘image’: image