GEO数据质量分析

在这里插入图片描述
分析前准备
source(“http://bioconductor.org/biocLite.R”)
biocLite(“affy”)
biocLite(“affyPLM”)
biocLite(“RColorBrewer”)
biocLite(“impute”)
biocLite(“limma”)
biocLite(“pheatmap”)
install.packages(“ggplot2”)

setwd("") #自己设定

#调用R包
library(affyPLM)
#载入数据
Data<-ReadAffy()
#对数据集进行回归计算
Pset<-fitPLM (Data)
质量控制:查看灰度图
image(Data[,1])
#根据计算结果,画权重图
image(Pset,type=“weights”,which=1,main=“Weights”)
#根据计算结果,画残差图
image(Pset,type=“resids”,which=1,main=“Residuals”)
#根据计算结果,画残差符号图
image(Pset,type=“sign.resids”,which=1,main=“Residuals.sign”)

质量控制:相对对数表达(RLE)
一个探针组在某个样品的表达值除以该探针组在所有样品中表达之的中位数后取对数
反映平行实验的一致性
#调用R包
library(affyPLM)
library(RColorBrewer)
#对数据集进行回归计算
Pset<-fitPLM (Data)
#载入颜色
colors<-brewer.pal(12,“Set3”)
#绘制RLE箱线图
Mbox(Pset,col=colors,main=“RLE”,las=3)

质量控制:相对标准差(NUSE)
一个探针组在某个样品的PM值的标准差除以该探针组在各样品中的PM值标准差的中位数后取对数。反映平行实验的一致性
比RLE更为敏感。
#调用R包
library(affyPLM)
library(RColorBrewer)
#对数据集进行回归计算
Pset<-fitPLM (Data)
#载入颜色
colors<-brewer.pal(12,“Set3”)
#绘制NUSE箱线图
boxplot(Pset,col=colors,main=“NUSE”,las=3)

质量控制:RNA降解图
原理:RNA降解从5’端开始,因为芯片结果5’端荧光强度要远低于3’端
#调用R包
library(affy)
#获取降解数据
data.deg<-AffyRNAdeg(Data)
#绘制RNA降解图
plotAffyRNAdeg(data.deg,col=colors)
#在左上部位添加图注
legend(“topleft”,sampleNames(Data),col=colors,lwd=1,inset=0.05,cex=0.2)

在这里插入图片描述
https://blog.csdn.net/qq_42335165/article/details/86218786
在这里插入图片描述
for /f “delims=” %%p in (‘dir /b/ad’) do copy %%p*.* f:\R.work\GSE79973_RAW\all
pause
注意:F盘要小写 f

无法定位程序输入点EXTPTR_PTR于动态链接库Rcpp.dll
可以安装最新版本的R

library(installr)
updateR()

https://blog.csdn.net/weixin_42815846/article/details/106972453

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

紫霄zixiao

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值