【科普干货】3张图搞懂Salesforce的认证体系(附新手考证攻略)

本文科普Salesforce的认证体系,包括其认证计划概述、新手考证攻略、工作机会和培训资源。Salesforce认证按管理员、开发者、架构师、顾问、营销人员5个角色分类,提供30个证书,基础认证如系统管理员、平台开发者I是关键。文章通过图表解析认证之间的关系,指出最昂贵的为技术架构师认证。认证考试主要为在线形式,考生需注意维护认证的有效性。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

Salesforce.com,这家神一般的公司及其产品我就不多说了,需要了解的可以阅读我的另一篇科普文章《一张图读懂Salesforce的产品架构》。

今天给大家带来另一篇关于Salesforce认证考试的科普文章。

Salesforce认证计划概述

最近这一两年,Salesforce的Trailhead和认证太热门了,小伙伴们前赴后继地刷Badge拿认证,可以考的认证也随着产品家族的增加而增加,从十几年前的几个认证,增长到现在的30多个认证。

与其他应用平台的认证不同,Salesforce认证体系中没有很鲜明的从低级到高级的层次结构(例如:助理->专业人员->专家)。相反,Salesforce认证更侧重于Salesforce专业人士中常见的各种工作角色或岗位,目前在Trailhead上把认证按以下5个角色进行分类:管理员、开发者、架构师、顾问、营销人员。

Salesforce目前提供30个证书,其中大多数是针对顾问和架构师的。 顾问和架构师的认证往往需要有其他更基础的认证作为前提条件。同时,由于Salesforce产品家族的不断扩充,每个认证也不免有很强的产品属性(例如,几乎每个产品都有一个顾问认证)。

因此,为了帮大家搞明白Salesforce这一大堆认证到底都是干嘛用的、能证明啥,我绘制了三张图来简要说明这30个认证的代表的资质以及它们之间的关系。希望大家可以一目了然看到哪些证适合哪些角色,哪些证是最基础的,哪些证是最难(费)考(钱)的。

### Flink Exactly-Once Semantics Explained In the context of stream processing, ensuring that each record is processed only once (exactly-once) without any loss or duplication becomes critical for applications requiring high accuracy and reliability. For this purpose, Apache Flink implements sophisticated mechanisms to guarantee exactly-once delivery semantics. #### Importance of Exactly-Once Processing Exactly-once processing ensures every message is consumed precisely one time by downstream systems, preventing both data loss and duplicate records[^3]. This level of assurance is particularly important when dealing with financial transactions, billing information, or other scenarios where even a single error can lead to significant issues. #### Implementation Mechanisms To achieve exactly-once guarantees, Flink employs several key technologies: 1. **Checkpointing**: Periodic snapshots are taken across all operators within a job graph at consistent points in time. These checkpoints serve as recovery states which allow jobs to resume from these saved positions upon failure. 2. **Two-phase commit protocol**: When interacting with external systems like databases or messaging queues through sinks, Flink uses an extended version of the two-phase commit transaction mechanism. During checkpoint creation, pre-commit actions prepare changes; after successful completion of the checkpoint process, global commits finalize those operations[^4]. ```mermaid graph LR; A[Start Transaction] --> B{Prepare Changes}; B --> C(Pre-Commit); C --> D{All Pre-commits Succeed?}; D -->|Yes| E(Global Commit); D -->|No| F(Abort); ``` This diagram illustrates how the two-phase commit works during sink operations. Each operator prepares its part before confirming globally whether everything has been successfully prepared. Only then does it proceed with committing or aborting based on consensus among participants. #### Barrier Insertion & Propagation For maintaining consistency between different parts of computation while taking periodic snapshots, barriers play a crucial role. They act as synchronization markers inserted into streams periodically according to configured intervals. As they propagate along with events throughout the topology, they ensure that no new elements enter until previous ones have completed their respective stages up till the barrier point. ```mermaid sequenceDiagram participant Source participant OperatorA participant OperatorB Note over Source: Time advances... Source->>OperatorA: Data Element 1 Source->>OperatorA: Checkpoint Barrier X Source->>OperatorA: Data Element 2 OperatorA->>OperatorB: Forwarded Elements + Barrier X Note right of OperatorB: Process pending items\nbefore handling next element post-barrier ``` The sequence above shows how barriers travel alongside regular data flow but enforce order so that computations remain synchronized despite asynchronous nature inherent in distributed environments. --related questions-- 1. What challenges arise when implementing exactly-once semantics in real-world applications? 2. How do checkpointing frequencies impact performance versus fault tolerance trade-offs? 3. Can you explain what happens if some nodes fail midway through a two-phase commit operation? 4. Are there alternative methods besides using barriers for achieving similar levels of consistency? 5. In practice, under what circumstances might at-least-once be preferred over exactly-once semantics?
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值