OpenCV中DNN模块、DNN模块的常用API

日萌社

人工智能AI:Keras PyTorch MXNet TensorFlow PaddlePaddle 深度学习实战(不定时更新)


2.4. cv.dnn

学习目标

  • 了解OpenCV中DNN模块
  • 知道DNN模块的常用API

OPenCV自3.3版本开始,加入了对深度学习网络的支持,即DNN模块,它支持主流的深度学习框架生成与到处模型的加载。

1.DNN模块

1.1. 模块简介

OpenCV中的深度学习模块(DNN)只提供了推理功能,不涉及模型的训练,支持多种深度学习框架,比如TensorFlow,Caffe,Torch和Darknet。

OpenCV那为什么要实现深度学习模块?

  • 轻量型。DNN模块只实现了推理功能,代码量及编译运行开销远小于其他深度学习模型框架。

  • 使用方便。DNN模块提供了内建的CPU和GPU加速,无需依赖第三方库,若项目中之前使用了OpenCV,那么通过DNN模块可以很方便的为原项目添加深度学习的能力。

  • 通用性。DNN模块支持多种网络模型格式,用户无需额外的进行网络模型的转换就可以直接使用,支持的网络结构涵盖了常用的目标分类,目标检测和图像分割的类别,如下图所示:

DNN模块支持多种类型网络层,基本涵盖常见的网络运算需求。

  • 也支持多种运算设备(CPU,GPU等)和操作系统(Linux,windows,MacOS等)。

1.2.模块架构

DNN模块的架构如下图所示:

从上往下依次是:

  • 第一层:语言绑定层,主要支持Python和Java,还包括准确度测试、性能测试和部分示例程序。
  • 第二层:C++的API层,是原生的API,功能主要包括加载网络模型、推理运算以及获取网络的输出等。
  • 第三层:实现层,包括模型转换器、DNN引擎以及层实现等。模型转换器将各种网络模型格式转换为DNN模块的内部表示,DNN引擎负责内部网络的组织和优化,层实现指各种层运算的实现过程。
  • 第四层:加速层,包括CPU加速、GPU加速、Halide加速和Intel推理引擎加速。CPU加速用到了SSE和AVX指令以及大量的多线程元语,而OpenCL加速是针对GPU进行并行运算的加速。Halide是一个实验性的实现,并且性能一般。Intel推理引擎加速需要安装OpenVINO库,它可以实现在CPU、GPU和VPU上的加速,在GPU上内部会调用clDNN库来做GPU上的加速,在CPU上内部会调用MKL-DNN来做CPU加速,而Movidius主要是在VPU上使用的专用库来进行加速。

除了上述的加速方法外,DNN模块还有网络层面的优化。这种优化优化分两类,一类是层融合,还有一类是内存复用。

  • 层融合

    层融合通过对网络结构的分析,把多个层合并到一起,从而降低网络复杂度和减少运算量。

如上图所示,卷积层后面的BatchNorm层、Scale层和RelU层都被合并到了卷积层当中。这样一来,四个层运算最终变成了一个层运算。

如上图所示,网络结构将卷积层1和Eltwise Layer和RelU Layer合并成一个卷积层,将卷积层2作为第一个卷积层新增的一个输入。这样一来,原先的四个网络层变成了两个网络层运算。

  • 如上图所示,原始的网络结构把三个层的输出通过连接层连接之后输入到后续层,这种情况可以把中间的连接层直接去掉,将三个网络层输出直接接到第四层的输入上面,这种网络结构多出现SSD类型的网络架构当中。

  • 内存复用

    深度神经网络运算过程当中会占用非常大量的内存资源,一部分是用来存储权重值,另一部分是用来存储中间层的运算结果。我们考虑到网络运算是一层一层按顺序进行的,因此后面的层可以复用前面的层分配的内存。

    下图是一个没有经过优化的内存重用的运行时的存储结构,红色块代表的是分配出来的内存,绿色块代表的是一个引用内存,蓝色箭头代表的是引用方向。数据流是自下而上流动的,层的计算顺序也是自下而上进行运算。每一层都会分配自己的输出内存,这个输出被后续层引用为输入。

对内存复用也有两种方法:

第一种内存复用的方法是输入内存复用。

如上图所示,如果我们的层运算是一个in-place模式,那么我们无须为输出分配内存,直接把输出结果写到输入的内存当中即可。in-place模式指的是运算结果可以直接写回到输入而不影响其他位置的运算,如每个像素点做一次Scale的运算。类似于in-place模式的情况,就可以使用输入内存复用的方式。

第二种内存复用的方法是后续层复用前面层的输出。

  • 如上图所示,在这个例子中,Layer3在运算时,Layer1和Layer2已经完成了运算。此时,Layer1的输出内存已经空闲下来,因此,Layer3不需要再分配自己的内存,直接引用Layer1的输出内存即可。由于深度神经网络的层数可以非常多,这种复用情景会大量的出现,使用这种复用方式之后,网络运算的内存占用量会下降30%~70%。

2.常用方法简介

DNN模块有很多可直接调用的Python API接口,现将其介绍如下:

2.1.dnn.blobFromImage

作用:根据输入图像,创建维度N(图片的个数),通道数C,高H和宽W次序的blobs

原型:

blobFromImage(image, 
                  scalefactor=None, 
                  size=None, 
                  mean=None, 
                  swapRB=None, 
                  crop=None, 
                  ddepth=None):

参数:

  • image:cv2.imread 读取的图片数据

  • scalefactor: 缩放像素值,如 [0, 255] - [0, 1]

  • size: 输出blob(图像)的尺寸,如 (netInWidth, netInHeight)
  • mean: 从各通道减均值. 如果输入 image 为 BGR 次序,且swapRB=True,则通道次序为 (mean-R, mean-G, mean-B).
  • swapRB: 交换 3 通道图片的第一个和最后一个通道,如 BGR - RGB
  • crop: 图像尺寸 resize 后是否裁剪. 如果crop=True,则,输入图片的尺寸调整resize后,一个边对应与 size 的一个维度,而另一个边的值大于等于 size 的另一个维度;然后从 resize 后的图片中心进行 crop. 如果crop=False,则无需 crop,只需保持图片的长宽比
  • ddepth: 输出 blob 的 Depth. 可选: CV_32F 或 CV_8U

示例:

import cv2
from cv2 import dnn
import numpy as np 
import matplotlib.pyplot as plt

img_cv2 = cv2.imread("test.jpeg")
print("原图像大小: ", img_cv2.shape)

inWidth = 256
inHeight = 256
outBlob1 = cv2.dnn.blobFromImage(img_cv2,
                                scalefactor=1.0 / 255,
                                size=(inWidth, inHeight),
                                mean=(0, 0, 0),
                                swapRB=False,
                                crop=False)
print("未裁剪输出: ", outBlob1.shape)
outimg1 = np.transpose(outBlob1[0], (1, 2, 0))

outBlob2 = cv2.dnn.blobFromImage(img_cv2,
                                scalefactor=1.0 / 255,
                                size=(inWidth, inHeight),
                                mean=(0, 0, 0),
                                swapRB=False,
                                crop=True)
print("裁剪输出: ", outBlob2.shape)
outimg2 = np.transpose(outBlob2[0], (1, 2, 0))

plt.figure(figsize=[10, 10])
plt.subplot(1, 3, 1)
plt.title('输入图像', fontsize=16)
plt.imshow(cv2.cvtColor(img_cv2, cv2.COLOR_BGR2RGB))
plt.axis("off")
plt.subplot(1, 3, 2)
plt.title('输出图像 - 未裁剪', fontsize=16)
plt.imshow(cv2.cvtColor(outimg1, cv2.COLOR_BGR2RGB))
plt.axis("off")
plt.subplot(1, 3, 3)
plt.title('输出图像 - 裁剪', fontsize=16)
plt.imshow(cv2.cvtColor(outimg2, cv2.COLOR_BGR2RGB))
plt.axis("off")
plt.show()

输出结果为:

另外一个API与上述API类似,是进行批量图片处理的,其原型如下所示:

blobFromImages(images, 
                   scalefactor=None, 
                   size=None, mean=None, 
                   swapRB=None, 
                   crop=None, 
                   ddepth=None):

作用:批量处理图片,创建4维的blob,其它参数类似于 dnn.blobFromImage

2.2.dnn.NMSBoxes

作用:根据给定的检测boxes和对应的scores进行NMS(非极大值抑制)处理

原型:

NMSBoxes(bboxes, 
             scores, 
             score_threshold, 
             nms_threshold, 
             eta=None, 
             top_k=None)

参数:

  • boxes: 待处理的边界框 bounding boxes
  • scores: 对于于待处理边界框的 scores
  • score_threshold: 用于过滤 boxes 的 score 阈值
  • nms_threshold: NMS 用到的阈值
  • indices: NMS 处理后所保留的边界框的索引值
  • eta: 自适应阈值公式中的相关系数:

  • top_k: 如果 top_k>0,则保留最多 top_k 个边界框索引值.

2.3. dnn.readNet

作用:加载深度学习网络及其模型参数

原型:

readNet(model, config=None, framework=None)

参数:

  • model: 训练的权重参数的模型二值文件,支持的格式有:*.caffemodel(Caffe)、*.pb(TensorFlow)、*.t7 或 *.net(Torch)、 *.weights(Darknet)、*.bin(DLDT).
  • config: 包含网络配置的文本文件,支持的格式有:*.prototxt (Caffe)、*.pbtxt (TensorFlow)、*.cfg (Darknet)、*.xml (DLDT).
  • framework: 所支持格式的框架名

该函数自动检测训练模型所采用的深度框架,然后调用 readNetFromCaffereadNetFromTensorflowreadNetFromTorch 或 readNetFromDarknet 中的某个函数完成深度学习网络模型及模型参数的加载。

下面我们看下对应于特定框架的API:

  1. Caffe
readNetFromCaffe(prototxt, caffeModel=None)
作用:加载采用Caffe的配置网络和训练的权重参数
  1. Darknet

    readNetFromDarknet(cfgFile, darknetModel=None)
    

    作用:加载采用Darknet的配置网络和训练的权重参数

  2. Tensorflow

    readNetFromTensorflow(model, config=None)
    

    作用:加载采用Tensorflow 的配置网络和训练的权重参数

    参数:

    • model: .pb 文件
    • config: .pbtxt 文件
  3. Torch

    readNetFromTorch(model, isBinary=None)
    

    作用:加载采用 Torch 的配置网络和训练的权重参数

    参数:

    • model: 采用 torch.save()函数保存的文件
  4. ONNX

    readNetFromONNX(onnxFile)
    

    作用:加载 .onnx 模型网络配置参数和权重参数

总结

  1. DNN模块是OPenCV中的深度学习模块

    优势:轻量型,方便,通用性

    架构:语言绑定层,API层,实现层,加速层

    加速方法:层融合、内存复用

  2. 常用API

    • dnn.blobfromImage

      利用图片创建输入到模型中的blobs

    • dnn.NMSBoxes

      根据boxes和scores进行非极大值抑制

    • dnn.readNet

      加载网络模型和训练好的权重参数


"""
DNN模块有很多可直接调用的Python API接口,现将其介绍如下:
    dnn.blobFromImage
        作用:根据输入图像,创建维度N(图片的个数),通道数C,高H和宽W次序的blobs
        原型:
            blobFromImage(image, scalefactor=None, size=None, mean=None, swapRB=None, crop=None, ddepth=None):
        参数:
            image:cv2.imread 读取的图片数据
            scalefactor: 缩放像素值,如 [0, 255] - [0, 1]
            size: 输出blob(图像)的尺寸,如 (netInWidth, netInHeight)
            mean: 从各通道减均值. 如果输入 image 为 BGR 次序,且swapRB=True,则通道次序为 (mean-R, mean-G, mean-B).
            swapRB: 交换 3 通道图片的第一个和最后一个通道,如 BGR - RGB
            crop: 图像尺寸 resize 后是否裁剪. 如果crop=True,则,输入图片的尺寸调整resize后,一个边对应与 size 的一个维度,而另一个边的值大于等于 size 的另一个维度;然后从 resize 后的图片中心进行 crop. 如果crop=False,则无需 crop,只需保持图片的长宽比
            ddepth: 输出 blob 的 Depth. 可选: CV_32F 或 CV_8U

    另外一个API与上述API类似,是进行批量图片处理的,其原型如下所示:
        blobFromImages(images, scalefactor=None, size=None, mean=None, swapRB=None, crop=None, ddepth=None):
        作用:批量处理图片,创建4维的blob,其它参数类似于 dnn.blobFromImage。
"""
import cv2
from cv2 import dnn
import numpy as np
import matplotlib.pyplot as plt
from pylab import mpl
mpl.rcParams["font.sans-serif"] = ["SimHei"] #支持中文显示
mpl.rcParams["axes.unicode_minus"] = False

img_cv2 = cv2.imread("MM.png")
print("原图像大小: ", img_cv2.shape)

inWidth = 256
inHeight = 256
outBlob1 = cv2.dnn.blobFromImage(img_cv2,
                                    scalefactor=1.0 / 255,
                                    size=(inWidth, inHeight),
                                    mean=(0, 0, 0),
                                    swapRB=False,
                                    crop=False)
print("未裁剪输出: ", outBlob1.shape)
#(1, 2, 0)中 1指高,2指宽,0指通道
outimg1 = np.transpose(outBlob1[0], (1, 2, 0))

outBlob2 = cv2.dnn.blobFromImage(img_cv2,
                                    scalefactor=1.0 / 255,
                                    size=(inWidth, inHeight),
                                    mean=(0, 0, 0),
                                    swapRB=False,
                                    crop=True)
print("裁剪输出: ", outBlob2.shape)
#(1, 2, 0)中 1指高,2指宽,0指通道
outimg2 = np.transpose(outBlob2[0], (1, 2, 0))

plt.figure(figsize=[10, 10])
plt.subplot(1, 3, 1)
plt.title('输入图像', fontsize=16)
plt.imshow(cv2.cvtColor(img_cv2, cv2.COLOR_BGR2RGB))
plt.axis("off")
plt.subplot(1, 3, 2)
plt.title('输出图像 - 未裁剪', fontsize=16)
plt.imshow(cv2.cvtColor(outimg1, cv2.COLOR_BGR2RGB))
plt.axis("off")
plt.subplot(1, 3, 3)
plt.title('输出图像 - 裁剪', fontsize=16)
plt.imshow(cv2.cvtColor(outimg2, cv2.COLOR_BGR2RGB))
plt.axis("off")
plt.show()

"""
dnn.NMSBoxes
    作用:根据给定的检测boxes和对应的scores进行NMS(非极大值抑制)处理
    原型:NMSBoxes(bboxes, scores, score_threshold, nms_threshold, eta=None, top_k=None)
    参数:
        boxes: 待处理的边界框 bounding boxes
        scores: 对于于待处理边界框的 scores
        score_threshold: 用于过滤 boxes 的 score 阈值
        nms_threshold: NMS 用到的阈值
        indices: NMS 处理后所保留的边界框的索引值
        eta: 自适应阈值公式中的相关系数:nms_threshold i+1  = eta * nms_threshold i
        top_k: 如果 top_k>0,则保留最多 top_k 个边界框索引值.
"""
"""
dnn.readNet
    作用:加载深度学习网络及其模型参数
    原型:readNet(model, config=None, framework=None)
    参数:
        model: 训练的权重参数的模型二值文件,支持的格式有:*.caffemodel(Caffe)、*.pb(TensorFlow)、*.t7 或 *.net(Torch)、
                *.weights(Darknet)、*.bin(DLDT).
        config: 包含网络配置的文本文件,支持的格式有:*.prototxt (Caffe)、*.pbtxt (TensorFlow)、*.cfg (Darknet)、*.xml (DLDT).
        framework: 所支持格式的框架名
    该函数自动检测训练模型所采用的深度框架,然后调用 readNetFromCaffe、readNetFromTensorflow、readNetFromTorch 或 readNetFromDarknet 
    中的某个函数完成深度学习网络模型及模型参数的加载。
    
    下面我们看下对应于特定框架的API:
        Caffe
            readNetFromCaffe(prototxt, caffeModel=None)
            作用:加载采用Caffe的配置网络和训练的权重参数
        Darknet
            readNetFromDarknet(cfgFile, darknetModel=None)
            作用:加载采用Darknet的配置网络和训练的权重参数
        Tensorflow
            readNetFromTensorflow(model, config=None)
            作用:加载采用Tensorflow 的配置网络和训练的权重参数
            参数:
                model: .pb 文件
                config: .pbtxt 文件
        Torch
            readNetFromTorch(model, isBinary=None)
            作用:加载采用 Torch 的配置网络和训练的权重参数
            参数:model: 采用 torch.save()函数保存的文件
        ONNX
            readNetFromONNX(onnxFile)
            作用:加载 .onnx 模型网络配置参数和权重参数
"""

In [1]:

import cv2 as cv
from cv2 import dnn
import numpy as np
import matplotlib.pyplot as plt

In [2]:

img = cv.imread("test.jpeg")
print("原始图像大小:",img.shape)
原始图像大小: (960, 640, 3)

In [3]:

plt.figure()
plt.imshow(img[:,:,::-1])

Out[3]:

<matplotlib.image.AxesImage at 0x12236f990>

In [6]:

inweight = 256
inHeight = 256
outblob1 = dnn.blobFromImage(img,scalefactor=1.0/255,size=(inweight,inHeight),mean=(0,0,0),swapRB = False,crop=False)
outblob1.shape

Out[6]:

(1, 3, 256, 256)

In [7]:

outimg1 = np.transpose(outblob1[0],(1,2,0))

In [8]:

plt.figure()
plt.imshow(outimg1[:,:,::-1])

Out[8]:

<matplotlib.image.AxesImage at 0x1276e7650>

In [9]:

outblob2 = dnn.blobFromImage(img,scalefactor = 1.0/255,size=(inweight,inHeight),mean=(0,0,0),swapRB=False,crop=True)

In [10]:

outblob2.shape

Out[10]:

(1, 3, 256, 256)

In [11]:

outimg2 = np.transpose(outblob2[0],(1,2,0))

In [12]:

plt.figure()
plt.imshow(outimg2[:,:,::-1])

Out[12]:

<matplotlib.image.AxesImage at 0x129e85610>

  • 4
    点赞
  • 16
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 1
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

あずにゃん

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值