马氏距离与卡方分布

最近在看《Fundamentals of object tracking》,看到最近邻滤波时,碰到了题中的两个概念。以下内容基本来自wiki,读者有不懂的地方看wiki更清晰明了。

1.马氏距离 Mahalanobis distance

线性代数中的“距离”是一个非常有用的概念,以前我们讲“范数”,其实就是关于“距离”的概念。比如说“2-范数”就是“欧式距离”。

欧式距离很有用,可以度量两个“点”之间有多远。

但有时我们想研究一个样本点a距离一个分布有多远,已验证它是不是属于这个分布的。当这个分布是球形分布时(比如高斯分布N~(μ,σ)),我们自然会想到,如果|a-μ|<σ,那么a属于这个分布的概率就很大。如果|a-μ|>3σ,那么a基本不属于这个分布了。

这没有什么问题。但是当这个分布不是球形分布,而是诸如椭球型分布的时候,上面的做法就很有问题了,椭球分布在长短轴上的|σ并不一样,因此出现了σ的“尺度”问题。

这时“欧氏距离”不管用了,我们需要用到“马氏距离”。

d^2=(x-\mu)^TS^{-1}(x-\mu)

其中,S是样本x的协方差矩阵。由于S逆的存在(当x维度为1时,S相当于1/σ,自行体会一下多维度的情况),使得马氏距离不敏感σ的“尺度”问题,通用性很好,所以在跟踪问题的贝叶斯框架下,一般都用马氏距离来量度某个观测值距离后验概率分布的均值有多远。

比如下式中,A和B到原点的距离都相同,所以他们的欧式距离是相同的,但是由于x轴方向的方差较大,因此B的马氏距离较近。(“在x轴上方差大”意味着数据在这个方向上“很可能”包含了样本B,“在y轴上方差小”意味着不太可能包含样本A)。

 

2. 卡方分布

在上述D的公式中,如果x是k维的高斯向量,那么D^2是属于卡方分布的:

“If Y is a k-dimensional Gaussian random vector with mean vector μ and rank k covariance matrix C, then X = (Yμ)TC−1(Y − μ) is chi-squared distributed with k degrees of freedom.”

此时就可以用卡方分布来设定某个阈值,也就是跟踪问题中“波门”的概念。

  • 2
    点赞
  • 9
    收藏
    觉得还不错? 一键收藏
  • 3
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值