等面积投影的全称是:正球在正轴的圆柱上进行等面积投影,下面简称等积圆柱投影。等积圆柱投影是4大圆柱投影之一,其特点是,通过等积投影出的地图上,每个国家的面积不失真(但是形状会失真),比如下面这个世界地图:
从图中可以感受到非洲有多大,南极洲有多小,而人间常用的等角圆柱投影(Mercator投影)中,非洲小的可怜,南极大到离谱,所以说,等积投影能正确的展示每个主权国家的战略纵深,哈哈。这个投影很简单,想象地球卡在一个等高的圆柱中,圆柱的高等于球的直径,然后沿平行于赤道平面的方向投影,如下图:
因此很容易得出,等积投影的世界地图,宽高比是2πR : 2R = π : 1,而非常见的正方形地图(Mercator)。而地图的面积等于2πR * 2R = 4πR²,地球的表面积公式也是4πR²,因此投影总面积与原始总面积相等,但这并不能证明每个国家的面积也与实际相符,下面我们要来证明,地球(将地球看作正球体)上任意一块区域,等积投影后,面积不变。首先无论哪种圆柱投影,经线的投影都是均匀分布的,我们只要证明,在任意2段纬线之间的面积不变即可,再简化,我们只要证明,从赤道到北纬ϕ°之间的面积等于矩形地图上,从水平中线到同等高度之间的面积,也就是S = 2πR * R * Sin(ϕ) = 2πR²Sin(ϕ)。首先将北纬ϕ微分成dϕ,也就是将0到ϕ之间的表面水平分割为无穷个圆环,圆环的宽度为Rdϕ,当ϕ趋于0,圆环趋向于圆柱,圆柱的周长是2πRCos(ϕ),因此小圆柱的面积微元是dS = 2πR²Cos(ϕ)dϕ,最后从赤道0°到北纬ϕ°来一个积分,得到2πR²Sin(ϕ),等于矩形地图中的相应面积:
因此,任意2个纬度线之间的面积也不变,再考虑到经线分布的均匀性,任意的经纬度区域内的小矩形面积不变,而任何不规则图形都可以由若干个这样的小矩形组成,从而推广到,任意的国家面积投影后不变。