等面积圆柱投影的证明

等积圆柱投影是一种保持地理面积不变的投影方式,常用于显示国家面积的准确比例。本文详细解释了这种投影的工作原理,通过数学证明了等积投影如何确保地图上的每个区域面积与实际相符,即使形状会有所失真。相较于常见的Mercator投影,等积投影更能准确反映如非洲和南极洲的实际大小。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

等面积投影的全称是:正球在正轴的圆柱上进行等面积投影,下面简称等积圆柱投影。等积圆柱投影是4大圆柱投影之一,其特点是,通过等积投影出的地图上,每个国家的面积不失真(但是形状会失真),比如下面这个世界地图:

ede56e26200988963281ab3af6e17128.png

从图中可以感受到非洲有多大,南极洲有多小,而人间常用的等角圆柱投影(Mercator投影)中,非洲小的可怜,南极大到离谱,所以说,等积投影能正确的展示每个主权国家的战略纵深,哈哈。这个投影很简单,想象地球卡在一个等高的圆柱中,圆柱的高等于球的直径,然后沿平行于赤道平面的方向投影,如下图:

f90a6f00cfd3e2733a4f7522ac61271a.png

因此很容易得出,等积投影的世界地图,宽高比是2πR : 2R = π : 1,而非常见的正方形地图(Mercator)。而地图的面积等于2πR * 2R = 4πR²,地球的表面积公式也是4πR²,因此投影总面积与原始总面积相等,但这并不能证明每个国家的面积也与实际相符,下面我们要来证明,地球(将地球看作正球体)上任意一块区域,等积投影后,面积不变。首先无论哪种圆柱投影,经线的投影都是均匀分布的,我们只要证明,在任意2段纬线之间的面积不变即可,再简化,我们只要证明,从赤道到北纬ϕ°之间的面积等于矩形地图上,从水平中线到同等高度之间的面积,也就是S = 2πR * R * Sin(ϕ) = 2πR²Sin(ϕ)。首先将北纬ϕ微分成dϕ,也就是将0到ϕ之间的表面水平分割为无穷个圆环,圆环的宽度为Rdϕ,当ϕ趋于0,圆环趋向于圆柱,圆柱的周长是2πRCos(ϕ),因此小圆柱的面积微元是dS = 2πR²Cos(ϕ)dϕ,最后从赤道0°到北纬ϕ°来一个积分,得到2πR²Sin(ϕ),等于矩形地图中的相应面积:

c217f22405aefe156a59539412ca0e69.png

因此,任意2个纬度线之间的面积也不变,再考虑到经线分布的均匀性,任意的经纬度区域内的小矩形面积不变,而任何不规则图形都可以由若干个这样的小矩形组成,从而推广到,任意的国家面积投影后不变。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

xosg

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值