前两篇文章介绍了四大圆柱投影之等面积投影,这次来介绍四大投影中最常用的一个:等角圆柱投影,也叫墨卡托投影(Mercator),以下简称等角投影。等角投影的完整定义是【正球在相切的(正轴的)圆柱上进行等角投影】,和四大圆柱投影的定义一样,唯一的不同是“等角”的特点,这里“等角”指相似的形状,也就是不同比例缩放的图形:地球表面上任意的图形(足够小)投影到圆柱上,形状不变,如下图所示:
图中,不同纬度有不同大小的圆,但圆不会变成椭圆,故曰等角。还能看出,这张图片的宽高比是1 : 1,同时纬度85°以上的地区都砍掉了,而之前的等面积投影的宽高比是π : 1,可以覆盖全球,这些后面会解释。首先根据前面介绍的的知识,所有的正轴切圆柱投影中,经度都是均匀分布的X=R·λ,所以南北纬φ°线上任何图形在水平方向上都放大了sec(φ)倍,为了保持面积不变,等积投影选择在垂直方向上缩小sec(φ)倍,而等角投影为了让形状不变,只得在垂直方向上也放大sec(φ)倍。
当无穷小时,上图中2个四边形相似,且边长的比值是1 : Sec(φ),所以在垂直方向很容易得到δy = R·δφ·Sec(φ),而y'(φ) = δy / δφ,所以y'(φ) = R·Sec(φ)。因此通过0~φ的积分可以求得y关于φ的投影公式。
等角圆柱投影公式是4大圆柱投影中最复杂的了,但证明起来却很简单,主要是原函数比较长。我们观察一下这个公式,当φ接近90°时,y趋向于无穷大,因此等角投影通常无法表示南北极地区,无法覆盖全球,因此投影时需要将某一纬度以上的区域裁剪掉,在大地测量学中,人们约定俗成:当投影地图的宽度=高度时的纬度作为裁剪线,这样的地图作为正方形能带来数不尽的便利,尤其是在WebGIS中已经成了既成事实的标准。令y = πR,求得φ = 85.05112877980659°,正好覆盖了地球上绝大部分区域,因此我们日常看到的世界地图都是85°纬线以内的等角圆柱投影。