GIS基本功 | 14 地图投影及其相关概念

本文介绍了地图投影的概念,包括几何透视法和数学解析法,强调地图投影的变形类型如长度、角度和面积变形,并探讨了等变形线、标准纬线等关键概念。地图投影的分类围绕变形性质和构成方法,如等角、等积和任意投影,以及圆柱、圆锥和平面投影。文章总结了地图投影选择的重要性和实际应用中的考量因素。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

地球椭球体表面是个曲面,而地图通常是二维平面,因此在地图制图时首先要考虑把三维的球面转化成二维的平面。

 

把地面上事物的位置表达在二维平面上有多种方法,古代的风景绘画、现代的摄影技术均可以在一定程度上反映出地物的相对位置,但是这些方法最大的问题是没有数学法则支撑,无法进行方位测量、距离量算等空间分析。

 

 01 地图投影

 

地图投影,是指按照一定的数学法则将地球椭球面上的经纬网转换到平面上,使地面的地理坐标与平面直角坐标(x, y)建立起函数关系,是绘制地图的数学基础之一。

 

地图投影的目的是将不可展的球面投影到一个可展的平面上,然后将该曲面展开成一个平面,来保证空间信息在地域上的连续性、完整性和可测度性。根据美国著名地图投影专家J.P.Snyder统计,世界上地图投影的种类有250多种。

 

 

根据所采用的数学法则不同,投影方法可分为几何透视法数学解析法

  • 几何透视法

 

几何透视法源于几何透视原理,以几何特征为依据,将地球上的经纬网投影到可以展开的平面(如圆锥、圆柱等)上。

 

为了便于理解几何透视原理,想象地球是一个表面透明的球体,其上绘有经纬网,用一张巨大的纸(称为投影曲面)包裹地球,假设有一个位于地心处的光源穿过地球将经纬网投影到这张纸上,然后用剪刀沿着某条线将纸剪开、铺平,就可以得到一幅地图。

 

 

几何透视投影法有一定的局限性,表现在精度较低,不易控制投影变形,适用于比较简单的投影。

 

  • 数学解析投影

 

数学解析投影利用笛卡尔提出的解析几何理论直接确定球面上某点的地理坐标与平面上对应点的直角坐标之间的函数关系,该方法可以较好控制投影变形,适用于比较复杂的投影。

 

大多数的数学解析投影是在几何透视投影的基础上,建立球面与投影面之间点与点的函数关系的,因此两种投影方法有一定联系。

 

常见的数学解析投影有伪方位投影、伪圆柱投影、伪圆锥投影(彭纳投影)和多圆锥投影,这些投影的具体特性将在后续章节中详细介绍。

 

 02 地图投影的变形

 

从几何意义上来说,球面是不可展平的曲面,要把它展成平面,势必会产生破裂与褶皱,使地物和地貌变得不连续和不完整,就像用一把刀将足球割开,压成平面,将会看到很多空隙和褶皱一样。

 

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值