几何概率模型

一、几何概率模型

① 样本空间的样本点无限个

② 每个样本点发生的可能性是均等的

③ P(A)=事件A的几何度量值/样本空间的几何度量值

说明:如果样本空间的样本点为有限个,则为古典概型

通过2个例子,来感受下两者的区别

① 例:在[1,4]区间内,任意取一个整数,求该整数<2的概率

设:事件A为整数<2

第1步:求样本空间 Ω的样本点个数{1,2,3,4} 为4个

第2步:求事件A的样本点个数{1}为1个

所以:P(A)=1/4=25%

② 例:在[1,4]区间内,任意取一个实数,求该实数<2的概率

分析:实数在[1,4]区间内,是存在无限个的,也就是有数不尽的

设:事件A为实数<2

第1步:求样本空间Ω的样本点构成的区域长度{1_2_3_4}为3

第2步:求事件A的样本点构成的区域长度{1_2}为1

所以:P(A)=1/3≈33%

不难发现,样本空间为无限个的时候,计算事件A的概率:

是以几何度量的比值来计算的,这就是几何概型

比如:长度比值、面积比值、角度比值、体积比值

二、几何概型完整公式

事件构成的区域及度量值样本空间构成的区域及度量值长度面积角度体积等P(A)=事件A构成的区域及度量值样本空间构成的区域及度量值(长度/面积/角度/体积等)

*** 几何概型问题求解步骤 ****

① 开始:判断样本空间是为无限个

② 则:明确 Ω 的取点区域范围

③ 继:确定所求概率事件中点的区域范围 A

④ 继:计算Ω区域和A区域的几何度量值 Ωn,An

⑤ 终:计算所求问题的概率 P(A)=AnΩn

2.1 区域度量:长度相关的例子

例:有一根长度为3米的线,拉直后在任意位置剪断,剪得的两段长度都不<1米的概率

设:事件A为剪得的两段长度都不<1米

第1步:求样本空间构成的区域度量为:3米(长度)

第2步:求事件A的区域度量为:1米(长度)

通过画图分析得到,如下图

所以:P(A)=1/3≈33%

2.2 区域度量:面积相关的例子

例:有一射击靶,面积为0.3平米,其中靶心为0.1平方米,假设在靶内任意位置射击1次,求射中靶心的概率

设:事件A为击中靶心

第1步:求样本空间构成的区域度量为:0.3平米(面积)

第2步:求事件A的区域度量为:0.1平米(面积)

所以:P(A)=0.1/0.3=1/3≈33%

2.3 区域体积(容积)相关的例子

例:有一盆100ml的水中有一个A细胞,从中随机取出10ml放到显微镜下观察,求发现A细胞的概率

设:事件A为10ml水中发现A细胞

第1步:求样本空间构成的区域度量为:100ml(容积)

第2步:求事件A的区域度量为:10ml(容积)

所以:P(A)=10/100=10%

三、几个经典的问题

3.1 线段上投1个点

投1个点,有无数种可能,但1个点无法构成一个区域范围

所以是无法计算出概率的,同样的,在面积上投1个点同理

所以,在几何概型中,事件A发生的前提是存在一个定义好的区域范围

于是,可以发现:

概率为0,不代表事件不可能发生,是成立的!这条适用于:古典和几何概型

概率为1的事件,一定是必然事件,是成立的!这条适用于:古典概型

概率为1的事件,一定是必然事件,是不成立的!这条适用于:几何概型

3.2 求线段长度问题

类似的有:等公交,等红绿灯,等闹钟叫,等电话呼,等水烧开...

例:有一公交站台,平均每10分钟开出一班车,问小明到达站台后2分钟内能坐上车的概率

分析:时间的度量值,是可以无限细分的,也就是无限个数的

所以:是一个几何概型问题

设:事件A为小明到达站台后2分钟内能坐上车

第1步:求样本空间构成的区域度量为:10分钟

第2步:求事件A构成的区域度量为:2分钟

通过画图分析得到,如下图

所以:P(A)=2/10=1/5=20%

3.3 求阴影面积问题

类似的有:各种能否遇到或不遇到的问题,比如:会面问题、取报纸等,下例为不遇到问题

例:ABCD为长方形,AB=20cm,BC=10cm,O为AB的中点,在长方形ABCD内随机取1点

问:取到的点到O距离>10cm的概率

设:事件A为取到的A到O的距离>10cm

第1步:求样本空间Ω构成的区域:20×10=200平方厘米(面积)

第2步:求事件A构成的区域:长方形的面积-半圆的面积=200-157≈43平方厘米

通过画图分析得到,如下图

所以:P(A)≈43/200≈21.5%

3.5 蒲丰投针问题

大概是说:把针随机的投在一个区域内,得出了一个几何概率模型

印象里是:通过计算两个变量来确定事件A范围的,其中有一个是角度

有兴趣的可以搜一下看看~

### 不同类型的机器学习模型比较 #### 几何模型 几何模型主要关注数据的空间结构和形状特征。这类模型通过捕捉输入空间中的拓扑关系来实现模式识别任务。例如,在流形假设下,高维数据通常位于低维嵌入子空间上;核方法则是利用内积运算将原始特征映射到更高维度希尔伯特空间中以便更好地分离类别[^1]。 对于时间序列预测问题而言,基于强化学习的动态组合框架可以有效地融合多个候选模型的优点并自适应调整权重分配策略以提高整体性能表现。 ```python import numpy as np from sklearn import manifold def isomap_example(data): iso = manifold.Isomap(n_neighbors=5, n_components=2) transformed_data = iso.fit_transform(data) return transformed_data ``` #### 概率模型 概率模型侧重于描述随机变量之间的依赖性和不确定性度量。贝叶斯定理提供了更新先验信念的有效机制,使得该类算法能够处理部分可观测环境下的决策制定过程。马尔可夫随机场、隐含狄利克雷分布等都是典型代表作之一[^3]。 在图网络作为物理引擎的应用场景里,研究者们提出了一个通用架构用于推理与控制任务的学习,其中包含了消息传递机制以及边节点属性更新规则的设计思路。 ```python import pymc3 as pm with pm.Model() as model: mu = pm.Normal('mu', mu=0, sigma=1) obs = pm.Normal('observed', mu=mu, sigma=1, observed=np.random.randn(100)) trace = pm.sample(1000) ``` #### 逻辑模型 逻辑模型强调命题间的演绎关系及其真值表表达形式。近年来兴起的关注机制允许神经元之间建立长距离关联从而增强理解能力。此外,结合变换器结构还可以进一步提升自然语言理解和生成的效果[^2]。 为了改善传统循环单元存在的梯度消失现象,研究人员引入了门控记忆体概念,即长短时记忆(Long Short-Term Memory,LSTM) 和门控循环单元(Gated Recurrent Unit,GRU),它们能够在保持历史状态的同时过滤掉无关噪声干扰项。 | 特征 | 几何模型 | 概率模型 | 逻辑模型 | | --- | --- | --- | --- | | 关注点 | 数据分布形态学特性 | 随机事件发生规律 | 命题间因果联系 | | 应用领域 | 图像分类/聚类分析 | 自然语言处理/推荐系统 | 文本摘要/问答对话 |
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

xosg

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值