概率论与数理统计————古典概型、几何概型和条件概率

本文概述了概率论中的关键概念,包括古典概型的有限性和等可能性、几何概型的计算公式、条件概率的定义以及全概率公式和贝叶斯公式的应用,还介绍了伯努利试验及其在二项式概率中的运用。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

一、古典概型

特点

(1)有限性:试验S的样本空间的有限集合

(2) 等可能性:每个样本点发生的概率是相等的

公式:P(A)=\frac{A}{S}         A为随机事件的样本点数;S是样本空间

二、几何概型

计算公式:p(A)=\frac{A}{S}     A的长度、面积或体积      S的长度、面积或体积

三、条件概率

条件概率:设A、B为两个事件,且p(B)>0,则在事件B条件下事件A发生的概率为

P(A|B)=\frac{P(AB)}{P(B)}

p(\bar{B}|A)=1-P(B|A)

乘法公式:

事件的独立性:若事件A、B满足P(B|A)=P(B)则事件A、B相互独立

本质:A和B互不影响

A、B相互独立——>P(AB)=P(A)P(B)

三事件相互独立:

四、全概率公式和贝叶斯公式

完备事件组:(1)A1、A2、A3、.....、An两两互斥   (2)A1\cup A2\cup A3\cup .....\cup An=S

则称A1A2A3An为完备事件组,或者一个划分

全概率公式:设B事件为任意事件,A1、A2、A3、.......、An为完备事件组

P(B)=P(A1)P(B|A1)+P(A2)P(B|A2)+,,,,,,,,,+P(An)P(B|An)

贝叶斯公式:设B事件为任意事件,A1、A2、A3、.......、An为完备事件组

P(Ai|B)=\frac{AiB}{B}=\frac{p(Ai)P(B|Ai)}{\sum P(Ai)P(B|Ai)}

五、伯努利试验和伯努利概型

伯努利试验:试验S只有两种结果A和\bar{A}

n重伯努利试验:把伯努利试验重复进行n次

二项式概率公式:Pn(k)=C_{n}^{k} p^{k} (1-p)^{n-k}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

辣个骑士

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值