RAG 检索增强技术之 重排序(Rerank)
在构建高性能的 RAG(Retrieval-Augmented Generation)系统时,检索阶段的结果质量直接影响生成答案的准确性与完整性。虽然传统的语义向量检索(如 FAISS、ANN)和关键词检索(如 BM25)能快速召回候选文档,但它们在排序上的表现仍有局限。
为了解决这一问题,重排序(Rerank) 技术被引入到 RAG 系统中,作为“检索后增强”的重要手段。其核心思想是:
在初步召回 Top-K 文档的基础上,使用更强大的模型对这些候选文档进行精细排序,以选出最相关的内容。
一、什么是重排序(Rerank)?
✅ 基本概念
重排序是指:
- 在初步检索得到一个候选文档列表之后,
- 使用更强的排序模型(通常是 Cross-Encoder 架构)对这些文档重新打分并排序。
Cross-Encoder 是一种比双塔结构(Bi-Encoder)更精确的语义匹配方式,它对用户输入和候选文档相关性进行打分,而不是生成embeding的方式来排序。
二、为什么需要重排序?
问题 | 解释 |
---|---|
初级检索排序不准 | 向量检索基于 Embedding 相似度,无法捕捉复杂的语义关系 |
上下文不一致 | 检索结果可能包含语义相近但内容无关的文档 |
排序不够精细 | 需要更高精度的排序模型来区分细微差异 |
✅ 重排序可以显著提升最终用于生成的答案的质量和相关性。
三、常用重排序模型
以下是一些常用的 Cross-Encoder 类型的重排序模型:
模型名称 | 提供方 | 特点 |
---|---|---|
BGE-Reranker-Large | 蚂蚁集团 | 支持多语言,性能强,适合中文场景 |
T5-Ranker | HuggingFace | 基于 T5 的生成式排序器 |
Sentence-BERT rerankers | UKP Lab | 支持多种语言,易于部署 |
BGE-Reranker-Large 因其在中文任务中的优异表现,已成为当前主流选择之一。
四、重排序流程图
五、实现示例(伪代码)
下面是一个使用 Python 和 LangChain 框架结合 BGE-Reranker-Large
模型的重排序实现思路。
💻 示例代码(伪代码 + 实现逻辑)
from langchain.retrievers import ContextualCompressionRetriever
from langchain.retrievers.document_compressors import CrossEncoderReranker
from langchain.vectorstores import FAISS
from langchain.embeddings import QwenEmbeddings
from transformers import AutoTokenizer, AutoModelForSequenceClassification
# Step 1: 加载预训练的 Cross-Encoder 模型(如 bge-reranker-large)
class BGEReranker:
def __init__(self, model_name="BAAI/bge-reranker-large"):
self.tokenizer = AutoTokenizer.from_pretrained(model_name)
self.model = AutoModelForSequenceClassification.from_pretrained(model_name)
def score(self, query, documents):
scores = []
for doc in documents:
inputs = self.tokenizer(query, doc, return_tensors='pt', truncation=True, padding=True)
with torch.no_grad():
logits = self.model(**inputs).logits
scores.append(logits.item())
return scores
# Step 2: 初始化压缩器(Compressor)
compressor = CrossEncoderReranker(reranker=BGEReranker(), top_n=3)
# Step 3: 初始化基础检索器(如 FAISS)
vectorstore = FAISS.load_local("faiss_index", QwenEmbeddings())
base_retriever = vectorstore.as_retriever(search_kwargs={"k": 10})
# Step 4: 构建带重排序功能的检索器
compression_retriever = ContextualCompressionRetriever(
base_compressor=compressor,
base_retriever=base_retriever
)
# Step 5: 查询并获取重排序后的结果
query = "量子计算的基本原理是什么?"
compressed_docs = compression_retriever.get_relevant_documents(query)
for i, doc in enumerate(compressed_docs):
print(f"{i+1}. {doc.page_content}")
六、优点与适用场景
✅ 优点
优势 | 描述 |
---|---|
提高排序准确性 | Cross-Encoder 捕捉更深层次的语义交互 |
提升回答质量 | 返回最相关的上下文,增强生成效果 |
可插拔性强 | 可与任意检索器组合使用,灵活部署 |
🧩 适用场景
- 精准问答系统(如客服、法律咨询)
- 多轮对话系统中需保持上下文一致性
- 医疗知识库检索
- 搜索引擎优化(SEO)、推荐系统等
七、总结
重排序(Rerank) 是 RAG 系统中不可或缺的一环,属于“检索后增强”的关键技术。通过使用 Cross-Encoder 类模型(如 BGE-Reranker-Large
),我们可以显著提升检索结果的相关性和排序质量。
在实际部署中,建议:
- 使用轻量级模型提高效率;
- 对 Top-K 结果进行缓存减少重复计算;
- 引入学习排序(LTR)或强化学习进一步优化排序策略。
随着大语言模型的发展,未来还可能出现基于 LLM 的动态重排序机制,值得持续关注。
📌 后续扩展方向建议:
- 结合 Self-RAG 技术实现动态重排序增强生成。