【RAG-十-检索增强技术之重排序rerank】

RAG 检索增强技术之 重排序(Rerank)

在构建高性能的 RAG(Retrieval-Augmented Generation)系统时,检索阶段的结果质量直接影响生成答案的准确性与完整性。虽然传统的语义向量检索(如 FAISS、ANN)和关键词检索(如 BM25)能快速召回候选文档,但它们在排序上的表现仍有局限。

为了解决这一问题,重排序(Rerank) 技术被引入到 RAG 系统中,作为“检索后增强”的重要手段。其核心思想是:

在初步召回 Top-K 文档的基础上,使用更强大的模型对这些候选文档进行精细排序,以选出最相关的内容。


一、什么是重排序(Rerank)?

✅ 基本概念

重排序是指:

  • 在初步检索得到一个候选文档列表之后,
  • 使用更强的排序模型(通常是 Cross-Encoder 架构)对这些文档重新打分并排序。

Cross-Encoder 是一种比双塔结构(Bi-Encoder)更精确的语义匹配方式,它对用户输入和候选文档相关性进行打分,而不是生成embeding的方式来排序。


二、为什么需要重排序?

问题解释
初级检索排序不准向量检索基于 Embedding 相似度,无法捕捉复杂的语义关系
上下文不一致检索结果可能包含语义相近但内容无关的文档
排序不够精细需要更高精度的排序模型来区分细微差异

✅ 重排序可以显著提升最终用于生成的答案的质量和相关性。


三、常用重排序模型

以下是一些常用的 Cross-Encoder 类型的重排序模型:

模型名称提供方特点
BGE-Reranker-Large蚂蚁集团支持多语言,性能强,适合中文场景
T5-RankerHuggingFace基于 T5 的生成式排序器
Sentence-BERT rerankersUKP Lab支持多种语言,易于部署

BGE-Reranker-Large 因其在中文任务中的优异表现,已成为当前主流选择之一。


四、重排序流程图

用户查询
初步检索
Top-K文档列表
重排序
使用Cross-Encoder模型重新评分
按得分排序返回Top-N文档

五、实现示例(伪代码)

下面是一个使用 Python 和 LangChain 框架结合 BGE-Reranker-Large 模型的重排序实现思路。

💻 示例代码(伪代码 + 实现逻辑)

from langchain.retrievers import ContextualCompressionRetriever
from langchain.retrievers.document_compressors import CrossEncoderReranker
from langchain.vectorstores import FAISS
from langchain.embeddings import QwenEmbeddings
from transformers import AutoTokenizer, AutoModelForSequenceClassification

# Step 1: 加载预训练的 Cross-Encoder 模型(如 bge-reranker-large)
class BGEReranker:
    def __init__(self, model_name="BAAI/bge-reranker-large"):
        self.tokenizer = AutoTokenizer.from_pretrained(model_name)
        self.model = AutoModelForSequenceClassification.from_pretrained(model_name)

    def score(self, query, documents):
        scores = []
        for doc in documents:
            inputs = self.tokenizer(query, doc, return_tensors='pt', truncation=True, padding=True)
            with torch.no_grad():
                logits = self.model(**inputs).logits
            scores.append(logits.item())
        return scores

# Step 2: 初始化压缩器(Compressor)
compressor = CrossEncoderReranker(reranker=BGEReranker(), top_n=3)

# Step 3: 初始化基础检索器(如 FAISS)
vectorstore = FAISS.load_local("faiss_index", QwenEmbeddings())
base_retriever = vectorstore.as_retriever(search_kwargs={"k": 10})

# Step 4: 构建带重排序功能的检索器
compression_retriever = ContextualCompressionRetriever(
    base_compressor=compressor,
    base_retriever=base_retriever
)

# Step 5: 查询并获取重排序后的结果
query = "量子计算的基本原理是什么?"
compressed_docs = compression_retriever.get_relevant_documents(query)

for i, doc in enumerate(compressed_docs):
    print(f"{i+1}. {doc.page_content}")

六、优点与适用场景

✅ 优点

优势描述
提高排序准确性Cross-Encoder 捕捉更深层次的语义交互
提升回答质量返回最相关的上下文,增强生成效果
可插拔性强可与任意检索器组合使用,灵活部署

🧩 适用场景

  • 精准问答系统(如客服、法律咨询)
  • 多轮对话系统中需保持上下文一致性
  • 医疗知识库检索
  • 搜索引擎优化(SEO)、推荐系统等

七、总结

重排序(Rerank) 是 RAG 系统中不可或缺的一环,属于“检索后增强”的关键技术。通过使用 Cross-Encoder 类模型(如 BGE-Reranker-Large),我们可以显著提升检索结果的相关性和排序质量。

在实际部署中,建议:

  • 使用轻量级模型提高效率;
  • 对 Top-K 结果进行缓存减少重复计算;
  • 引入学习排序(LTR)或强化学习进一步优化排序策略。

随着大语言模型的发展,未来还可能出现基于 LLM 的动态重排序机制,值得持续关注。


📌 后续扩展方向建议:

  • 结合 Self-RAG 技术实现动态重排序增强生成。
### GTE Rerank 技术实现与应用 #### 实现细节 GTE模型通过引入更多样化的训练数据格式以及不同的自监督学习信号,在无监督环境下显著超越了先前的最佳模型E5的表现[^1]。这种改进不仅体现在性能上的提升,还使得GTE能够在不依赖特定任务提示的情况下完成多种自然语言处理任务。 对于重排序(Re-rank)部分,借鉴RAG系统的优化思路,采用先进的算法来调整候选列表顺序,从而提高最终推荐项的质量和准确性[^2]。具体来说,当面对大量初始检索结果时,会先利用初步筛选机制选出若干高质量候选项;随后借助更精细的评分函数对这部分精选出来的条目做二次评估,进而决定它们之间相对位置的变化情况。 在实际部署过程中,为了更好地支持跨语言场景下的高效查询需求,可选用`gte-multilingual-base`这类专为解决长文本及多语言挑战设计的大规模预训练模型作为基础架构的一部分[^5]。此类模型具备良好的泛化能力,能够有效应对来自不同语种的数据输入,并保持较高的运算效率。 ```python from sentence_transformers import SentenceTransformer, util model = SentenceTransformer('sentence-transformers/gte-multilingual-base') def rerank(query, documents): # 将查询字符串转换成向量表示形式 query_embedding = model.encode([query], convert_to_tensor=True) # 对文档集合执行相同操作 doc_embeddings = model.encode(documents, batch_size=32, show_progress_bar=False, convert_to_tensor=True) # 计算余弦相似度得分并据此排序 hits = util.semantic_search(query_embedding, doc_embeddings)[0] # 返回按照匹配程度由高到底排列的新序列 ranked_docs = [(documents[hit['corpus_id']], hit['score']) for hit in sorted(hits, key=lambda d: -d['score'])] return ranked_docs ``` 此代码片段展示了如何使用Python脚本加载指定版本的语言模型并对给定的一组文档实施重排序逻辑。其中涉及到了将文本映射至低维空间的技术手段——即所谓的“embedding”,它允许计算机理解人类语言的意义层面特征而非单纯字符组合模式。 #### 应用实例 假设有一个电子商务平台想要改善其商品搜索功能,则可以通过集成上述提到的方法论框架来达成目标: - **第一步**:收集用户提交的商品名称、描述等信息构成待评价对象池; - **第二步**:每当收到新的查找请求时,就调用预先定义好的API接口传递相应参数进去; - **第三步**:内部服务器端程序负责接收外部传来的指令并将之解析为适合本地环境使用的格式; - **第四步**:运用前述编写的函数完成整个流程中最核心环节的工作——也就是确定哪些产品最有可能满足顾客期望; - **第五步**:最后把整理完毕的结果反馈回去展示给前端界面供浏览者查看挑选。 值得注意的是,尽管这里列举了一个较为具体的例子说明可能的应用方向之一,但实际上这套方案具有相当广泛的适用范围,几乎涵盖了任何涉及到信息检索业务领域的企业机构都可以考虑采纳类似的策略来进行技术创新和服务升级。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值