【大模型对话 的界面搭建-Open WebUI】

Open WebUI 前身就是 Ollama WebUI,为 Ollama 提供一个可视化界面,可以完全离线运行,支持 Ollama 和兼容 OpenAI 的 API。

github网址

https://github.com/open-webui/open-webui

安装

第一种 docker安装

如果ollama 安装在同一台服务器上:

docker run -d -p 3000:8080 --add-host=host.docker.internal:host-gateway -v open-webui:/app/backend/data --name open-webui --restart always ghcr.io/open-webui/open-webui:main

如果不在同一台服务器上:

docker run -d -p 3000:8080 -e OLLAMA_BASE_URL=https://example.com -v open-webui:/app/backend/data --name open-webui --restart always ghcr.io/open-webui/open-webui:main

如果有NVIDIA的GPU:

docker run -d -p 3000:8080 --gpus all --add-host=host.docker.internal:host-gateway -v open-webui:/app/backend/data --name open-webui --restart always ghcr.io/open-webui/open-webui:cuda

还有一些安装细节,可以参考https://docs.openwebui.com/ 查看

其他安装方法

pip

注意这个有版本要求:
Python 3.11 is required for this method

安装

pip install open-webui

使用:

open-webui serve

从open webui的github repo

要求:

🐰 Node.js >= 20.10
🐍 Python >= 3.11

在linux或者macos

git clone https://github.com/open-webui/open-webui.git
cd open-webui/

# Copying required .env file
cp -RPp .env.example .env

# Building Frontend Using Node
npm install
npm run build

cd ./backend

# Optional: To install using Conda as your development environment, follow these instructions:
# Create and activate a Conda environment
conda create --name open-webui-env python=3.11
conda activate open-webui-env

# Install dependencies
pip install -r requirements.txt -U

# Start the application
bash start.sh

在windows下:

git clone https://github.com/open-webui/open-webui.git
cd open-webui

copy .env.example .env

npm install
npm run build

cd .\backend

# Optional: To install using Conda as your development environment, follow these instructions:
# Create and activate a Conda environment
conda create --name open-webui-env python=3.11
conda activate open-webui-env

pip install -r requirements.txt -U

start.bat

安装完成后, openwebui运行在http://localhost:8080/上了

完全离线安装

上面是比较推荐的方法,如果完全离线可以从python官网下载python,然后官网下载open webui

  • python

https://www.python.org/downloads/
linux版本通常是source 版本 到linux安装

  • open webui
    https://pypi.org/project/open-webui/#files

运行起来后,可以跟chatgpt一样的界面进行对话了,另外WebUI 还天然支持RAG,可以尝试上传资料等
在这里插入图片描述

### 大型模型对话Web UI实现或工具 为了构建大型语言模型驱动的对话系统的Web界面,可以采用多种技术和框架来支持高效的开发和部署。以下是几种常用的工具和技术: #### 前端技术栈 现代前端框架如React[^2] 和 Vue.js[^3] 是创建交互式用户界面的理想选择。这些框架提供了组件化架构的支持,使得开发者能够轻松管理复杂的UI逻辑。 ```javascript // React示例:简单的聊天窗口组件 import React, { useState } from 'react'; function ChatWindow() { const [messages, setMessages] = useState([]); const [inputValue, setInputValue] = useState(''); function sendMessage() { if (inputValue.trim()) { fetch('/api/chat', { method: 'POST', headers: { 'Content-Type': 'application/json' }, body: JSON.stringify({ message: inputValue }) }).then(response => response.json()) .then(data => { setMessages(prev => [...prev, data]); setInputValue(''); }); } } return ( <div> <ul>{messages.map((msg, i) => <li key={i}>{msg.text}</li>)}</ul> <input value={inputValue} onChange={(e) => setInputValue(e.target.value)} /> <button onClick={sendMessage}>Send</button> </div> ); } ``` #### 后端集成与API设计 后端通常通过RESTful API 或 GraphQL 接口提供服务。对于实时通信需求较高的场景,WebSocket 可作为更优的选择之一[^4] 。此外,FastAPI[^5] 这样的高性能Python框架也适合快速搭建LLM接口。 #### 工具推荐 一些专门用于简化AI生成内容(AIGC)应用开发过程中的Prompt工程实践案例表明,合理选用现成开源项目能大幅减少重复劳动并加速产品上线时间表。例如 Gradio[^6], 它允许无需编写大量HTML/CSS/JS代码即可生成美观易用的应用程序原型;Streamlit[^7] 则专注于数据科学家群体,凭借其简洁直观语法帮助他们迅速分享研究成果给非技术人员审阅反馈意见。 综上所述,在实际操作过程中遵循相应实施步骤选取恰当的技术堆栈以及评估指标体系结构,可成功将提示词设计方案融入到基于人工智能生成内容的大规模生产环境中去从而提升整体表现水平让用户感到满意[^8] 。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值