【机器学习-一-基础概念篇】

机器学习

定义

机器学习最早是被Arthur Samuel 提出的一个概念,指计算机无需明确编程即可学习的研究领域。1950年他发明的跳棋程序,这个人机对弈游戏让他的声名鹊起,机器学习这个概念才进入大众的是视线。
在这个跳棋程序里,他编程了一种算法,这个程序与Arthur下了数万次跳棋,计算机逐渐学会了下在哪里有更大的可能会赢得比赛,哪里会输,通过这种方法,最终计算机比发明人本人更会下跳棋。

分类

机器学习分为监督学习和非监督学习。
其中监督学习是现实世界中用的最多的,而且是目前进度最快的。非监督学习常用在聚类等,我们会在下一节继续深入学习这些分类的应用和概念。
另外还有RL,也就是Reinforcement learning,强化学习,这是另外一种学习算法,但是通常我们把机器学习就分为上面两类

算法

机器学习中最重要的就是算法了,算法是机器学习是实现功能的工具,当然仅仅有了这些功能还不够,机器学习里还要学会如何去运用这些算法,这些就是机器学习的主要学习内容,也是系列课的主要内容

应用

机器学习现在应用广泛,其中最出名的就是AI,人们期望AI最终能够像人一样聪明的活动,这就是AGI,是目前研究的主要方向。
机器学习当然也包括其他应用,包括自动驾驶、大规模农业应用等等。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值