matlab pca函数的使用方法

转载自 https://blog.csdn.net/qq_29007291/article/details/54425356
亦可参考 https://www.cnblogs.com/denny402/p/4020831.html

matlab 自带函数pca的用法

因为pca在各个学科都有使用,每个学科对于名词的叫法都不太一样,使用的目的都不太一样,我就是单纯的想使用降维,发现matlab函数的pca函数的输入参数除了数据集X还有10个…弄了一段时间才明白…这里分享一下.有错误和不清楚的还请大家指正

数据集X(每行为一个样本,行数为样本数)

  • coeff = pca(X)
  • coeff = pca(X,Name,Value)
  • [coeff,score,latent] = pca(___)
  • [coeff,score,latent,tsquared] = pca(___)
  • [coeff,score,latent,tsquared,explained,mu] = pca(___)
    i.e

Input Argument 0
X :–数据集 假设n个样本, 每个样本p维,则 X是n-by-p的matrix

Input Argument 1
‘Algorithm’ — Principal component algorithm
‘svd’ (default) | ‘eig’ | ‘als’
解释:PCA 涉及到求协方差矩阵的特征向量, 在matlab 有3中算法
默认 :SVD,
eig (Eigenvalue decomposition )算法, 此算法当n(number of examples) > p (features) 时,速度快于SVD,但是计算的结果没有SVD精确
als( Alternating least squares )算法,此算法为了处理数据集X中有少许缺失数据时的情况(i.e 0), 但是对于X为稀疏数据集(缺失数据过多)时,不好用

Input Argument 2
‘Centered’ — Indicator for centering columns
true (default) | false
解释:选择是否对数据进行中心化, 也是数据的特征是否进行零均值化(i.e.按列减去均值, 为了得到covariance
matrix), 如果选择了true, 则可用scorecoeff’恢复中心化后的X, 若选择了false,则可用scorecoeff’
恢复原始的X

默认:true(中心化)

Input Argument 3
‘Economy’ — Indicator for economy size output
true (default) | false
解释: 有时候输出的coeff(映射矩阵p-by-p)过大, 而且是没有必要的(因为我们要降维),所以可以只输出coeff(以及score,latent)的前d列,
d是数据集的自由度,数据集没NAN的时候d=n-1; 具体的解释见matlab.总之如果将看见完整的PCA结果,可以设置为false.
默认:true ,(默认ture以后对于初次使用matlab这个函数的人非常迷惑).

Input Argument 4
‘NumComponents’ — Number of components requested
number of variables (default) | scalar integer
解释:输出指定的components 也就是更为灵活的Economy,但是经过试验发现指定成分数 仅在小于d(自由度)时有效,大于d时无效;
默认: number of variables ( i.e p,特征数目)

Input Argument 5
‘Rows’ — Action to take for NaN values
‘complete’ (default) | ‘pairwise’ | ‘all’
解释: 此选项是为了智能处理数据集X中含有NAN的情况,
complete: 计算之前.移除X中含有NAN的行(i.e 样本),计算完成后,含有NAN的行被重新插入到
score and tsquared相应的位置中(coeff呢?)
pairwise : 首先这个选项必须配合 'Argorithm’中 ‘eig’进行使用.如果没有指定’eig’(默认svd),
当指定pairwise时,则会自动切换为eig; 指定为svd,则会发送warning message,
然后自动切换为eig;若指定为als, 则会发送warning message然后忽略 ‘Rows’此选项.
成功使用此选项时,若计算协方差(i,j)处值时遇到NAN,则使用X中第i或j列中不含NAN
的行此处来计算的协方差值.
all : 当确定X中无缺失数据,使用’all’,则pca会使用X中所有的数据,当遇到NAN时则会自动终止.
默认:complete

Input Argument 6
‘Weights’ — Observation weights
ones (default) | row vector
解释: 基于observations(i.e 样本)的权重pca,有需求的可以自己查查

Input Argument 7
‘VariableWeights’ — Variable weights
row vector | ‘variance’
解释:基于variables(i.e.features)的权重pca,有需求的自己查
默认: 无默认值, 也就是默认不使用此选项

Input Argument 8
‘Coeff0’ — Initial value for coefficients
matrix of random values (default) | p-by-k matrix
解释: Initial value for the coefficient matrix coeff, 不是太看的懂,但是要配合’Algorithm’中的
'als’使用
默认: p-by-random

Input Argument 9
‘Score0’ — Initial value for scores
matrix of random values (default) | k-by-m matrix
解释: Initial value for scores matri score.不是太看的懂,但是要配合’Algorithm’中的 'als’使用
默认 : n-by-random

Input Argument 10
‘Options’ — Options for iterations
structure(此用法是个结构体)
解释:用于迭代的选项,仅配合’Algorithm’中的’als’使用. 因为’als’是使用迭代的方法进行计算的
对这个不感兴趣, 有兴趣的可以去help一下
附上help中的使用方法 opt = statset(‘pca’); opt.MaxIter = 2000; coeff =pca(X,‘Options’,opt);

Output Argument 1
coeff : 主成分系数 应该就是协方差矩阵的特征向量矩阵(也就是映射矩阵).
完整输出的情况下是一个p-by-p 的matrix.每一列都是一个特征向量.按对应的特征值
的大小,从大到小进行排列.

Output Argument 2
score: 进行旋转(也就是利用映射矩阵coeff进行)后的结果i.e. score = X * coeff. n-by-p matrix
这里有个坑 如果你使用pca时使用的是默认的中心化(i.e 不对’Centered’设置’false’),
拿X *coeff 和score对比的时候, 记得把X中心化后再乘以coeff,之后再和score对比…;
同样如果pca使用的是默认值, 恢复的X = score * coeff’ (注意转置)是中心化后的数据

Output Argument 3
latent: 主成分方差 也就是各特征向量对应的特征值,从大到小进行排列

Output Argument 4
tsquared :层次不够 无法解释…

Output Argument 5
explained : 每一个主成分所贡献的比例,可以更直观的选择所需要降维的维数了,不用再用特征值去求了

Output Argument 6

mu: X 按列的均值,当前仅当 ‘Centered’置于’true’(默认值)时才会返回此变量

MATLAB中的PCA函数是`pca`,可以用于计算数据的主成分分析。下面是一个简单的示例,演示如何使用`pca`函数进行主成分分析: ```matlab % 生成一个5x3的随机矩阵作为示例数据 data = rand(5,3); % 使用pca函数进行主成分分析 [coeff, score, latent] = pca(data); % coeff表示每个主成分的特征向量,score表示每个数据点在主成分上的投影,latent表示每个主成分的方差贡献率 disp('Coefficients:'); disp(coeff); disp('Scores:'); disp(score); disp('Latent:'); disp(latent); ``` 在上述示例中,首先生成了一个5x3的随机矩阵作为示例数据,然后使用`pca`函数进行主成分分析。`pca`函数的输出包括三个变量: - `coeff`:每个主成分的特征向量,它们按列排列; - `score`:每个数据点在主成分上的投影,它们按行排列; - `latent`:每个主成分的方差贡献率,按降序排列。 在上述示例中,使用`disp`函数将输出结果打印到命令窗口中。 需要注意的是,`pca`函数的输入必须是一个矩阵,每一行表示一个数据点,每一列表示一个特征。如果数据需要进行标准化,可以使用`zscore`函数进行标准化处理。例如: ```matlab % 生成一个5x3的随机矩阵作为示例数据,并进行标准化处理 data = rand(5,3); data = zscore(data); % 使用pca函数进行主成分分析 [coeff, score, latent] = pca(data); ``` 此时,`data`矩阵的每一列都具有零均值和单位方差。 需要注意的是,在实际应用中,需要根据实际问题进行数据预处理和特征选择,以提高主成分分析的效果和可靠性。
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值