一、欧拉数值法概述
1.思路:
首先只知道曲线的起点(x_0),曲线其它部分是未知,不过通过微分方程,x_0的斜率是可以被计算出来的,也就是有了切线;
然后顺着切线向前走一小步到x_1,假设x_1 是曲线上的一点(实际通常不是),那么同上述方法确定x_1 的切线;
依此类推,得到x_0 、x_1 、x_2…x_n, 在大部分情况折线与原曲线差距不远,且误差可以通过减少步长来降低
缺点:对单调凸或单调凹,欧拉数值法画出的折线会偏离的越来越远
优化:
1.减少步长
2.优化每一点走出的斜率
二、画欧拉数值法图
三、欧拉数值法:缺点
四、欧拉数值法:优化