- 关键数据集分类:高亚洲观测数据集
- 时间分辨率:月
- 空间分辨率:1km - 10km
- 共享方式:开放获取
- 数据大小;26.77 GB
- 数据时间范围:1901-2023
- 元数据更新时间:2024-07-17
数据集摘要
该数据为中国逐月最低温度数据,空间分辨率为0.0083333°(约1km),时间为1901.1-2023.12。数据格式为NETCDF,即.nc格式。数据单位为0.1 ℃。该数据集是根据CRU发布的全球0.5°气候数据集以及WorldClim发布的全球高分辨率气候数据集,通过Delta空间降尺度方案在中国降尺度生成的。并且,使用496个独立气象观测点数据进行验证,验证结果可信。本数据集包含的地理空间范围是全国主要陆地(包含港澳台地区),不含南海岛礁等区域。nc数据可使用ArcMAP软件打开制图; 并可用Matlab软件进行提取处理,Matlab发布了读入与存储nc文件的函数,读取函数为ncread,切换到nc文件存储文件夹,语句表达为:ncread (‘XXX.nc’,‘var’, [i j t],[leni lenj lent]),其中XXX.nc为文件名,为字符串需要’’;var是从XXX.nc中读取的变量名,为字符串需要’’;i、j、t分别为读取数据的起始行、列、时间,leni、lenj、lent i分别为在行、列、时间维度上读取的长度。这样,研究区内任何地区、任何时间段均可用此函数读取。Matlab的help里面有很多关于nc数据的命令,可查看。数据坐标系统建议使用WGS84。
数据文件命名方式和使用方法
以nc格式为存储,文件名称为“tmn_yyyy.nc”,其中yyyy为年份,每个nc文件包含12个时间点,代表1-12月。为减少存储量,均已压缩文件存放,如tmn_yyyy.rar。nc格式可用arcmap多维数据工具打开,或者Matlab、R等等。注意:每个nc文件有12个图层,如在ArcMap中打开,是可以选择time维度,选择1代表1月,选择7则代表7月,依次类推;如果默认不选择time维度,打开数据后则默认为第一个图层,也就是1月。nc文件可以在ArcMap工具箱Multidimension Tools下面的Make NetCDF Raster Layer工具打开,对话框打开后,可在Dimension Values (optional)下选择time,其value数值点开可看到数值列表1-12,选择其中一个月份即可;或者默认打开nc文件后,显示第一个图层(1月份),然后在图层属性下点击NETCDF属性卡,选择time维度的value列表,可以看到1-12,选择其中一个月份即可。如在ArcMap中进行栅格计算等操作,建议在选择好月份之后,导出为一个栅格数据实体存于硬盘,因为加载的nc数据仍为一个临时数据在内存中。导出为栅格数据实体后,建议给WGS84坐标系统,然后开始操作分析。给WGS84时,在Catalog中找到导出的栅格数据实体,点开其属性,找到Spatial Reference属性,点开Edit打开坐标系统选项,在Geographic Coordinate Systems(也就是大地坐标系统)找到World,选择其下WGS 1984。其后才可以赋予投影系统等等操作,如需要的话。
本数据要求的引用方式数据引用必读
数据的引用
彭守璋. (2020). 中国1km分辨率月最低温度数据集(1901-2023). 国家青藏高原数据中心. https://doi.org/10.5281/zenodo.3185722.
Peng, S. (2020). 1-km monthly minimum temperature dataset for China (1901-2023). National Tibetan Plateau / Third Pole Environment Data Center. https://doi.org/10.5281/zenodo.3185722.
(下载引用: RIS格式 RIS英文格式 Bibtex格式 Bibtex英文格式 )
文章的引用
1、Peng, S.Z., Ding, Y.X., Wen, Z.M., Chen, Y.M., Cao, Y., & Ren, J.Y. (2017). Spatiotemporal change and trend analysis of potential evapotranspiration over the Loess Plateau of China during 2011-2100. Agricultural and Forest Meteorology, 233, 183-194. https://doi.org/10.1016/j.agrformet.2016.11.129 ( 查看 Bibtex格式 )
2、Ding, Y.X., & Peng, S.Z. (2020). Spatiotemporal trends and attribution of drought across China from 1901–2100. Sustainability, 12(2), 477. ( 查看 Bibtex格式 )
3、Peng, S.Z., Ding, Y.X., Liu, W.Z., & Li, Z. (2019). 1 km monthly temperature and precipitation dataset for China from 1901 to 2017. Earth System Science Data, 11, 1931–1946. https://doi.org/10.5194/essd-11-1931-2019 ( 查看 Bibtex格式 )
4、Peng, S., Gang, C., Cao, Y., & Chen, Y. (2017). Assessment of climate change trends over the loess plateau in china from 1901 to 2100. International Journal of Climatology. ( 查看 Bibtex格式 )