Towards a new generation of artificial intelligence in China

本文概述了中国新一代人工智能发展规划,强调了2020-2030期间的目标,包括缩小技术差距、推动产业升级、建立创新中心,以及大学、政府与企业的合作。关键领域如自动驾驶、医疗智能和物联网展示了AI的应用。同时,文章探讨了人才培养、AI解释性及伦理规范的重要性.

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

宏观上规划了我国的AI的前景。

新一代人工智能计划

2016 年 1 月,由科技部牵头,来自高校、研究所、企业和政府部门的220多位人工智能专家参会,共同参与起草了《新一代人工智能(NGAI)发展规划》Artificial Intelligence (NGAI) Development Plan。

中国国务院于 2017 年 7 月启动了 NGAI 发展规划(2015-2030),这是本世纪中国人工智能领域的第一个系统性战略规划。它提出了到2030年中国人工智能发展的总体思路、战略目标、主要任务和配套措施,分三个阶段性的国家顶层规划。

第一,到2020年底,中国将缩小与世界领先国家的技术差距,中国人工智能产业将在国际最高水平上展开竞争。
第二,到2025年,我国人工智能基础研究取得重大突破,形成NGAI框架,部分技术和应用达到世界领先水平,人工智能成为我国产业升级和经济发展的主要动力。转型。
第三,到 2030 年,中国有望成为世界一流的人工智能创新中心之一,并将为人工智能发展制定全面、适当的监管、法律和伦理原则。

大学、政府和行业之间的合作

为使领先的人工智能相关企业全面致力于解决人工智能技术和应用需求,科技部近年来建立了15个以应用驱动、企业为主导、市场为导向的国家开放创新平台。

国家开放创新平台:

  1. 百度(自动驾驶)
  2. 阿里巴巴(城市认知)
  3. 腾讯(医学影像)
  4. 科大
### Agent RAG in IT Context In the context of Information Technology (IT), **Agent RAG** refers to a specialized framework or methodology that integrates Retrieval-Augmented Generation (RAG) techniques into intelligent agents designed for multimodal interaction. This approach leverages advanced retrieval mechanisms combined with generative models to enhance an agent's ability to process, understand, and respond effectively across various modalities such as text, images, audio, etc.[^1] The core concept behind Agent RAG involves equipping artificial intelligence systems with capabilities not only to generate responses but also to retrieve relevant information from large datasets dynamically. By doing so, these agents can provide more accurate, timely, and contextually appropriate interactions compared to traditional methods relying solely on pre-programmed rules or static knowledge bases. #### Definition An **Agent RAG system** is characterized by its dual functionality: - **Retrieval**: Efficiently searching through vast amounts of data stored within databases or external sources. - **Generation**: Utilizing retrieved information along with contextual understanding derived from user inputs to produce meaningful outputs. This combination allows for dynamic adaptation based on real-time needs while maintaining high levels of accuracy and relevance in generated content[^2]. #### Usage Scenarios Applications of Agent RAG span multiple domains including customer service chatbots, virtual assistants, educational platforms, healthcare diagnostics tools, among others. In each case, the technology enables smarter decision-making processes supported by up-to-date factual information alongside personalized engagement strategies tailored specifically towards individual users' requirements. For instance, in customer support scenarios, an Agent RAG-powered bot could access company policies, product manuals, previous conversation logs, and even live web searches when formulating replies—ensuring comprehensive yet precise assistance every time without requiring extensive manual intervention. #### Related Technologies Several key technologies underpin successful implementation of Agent RAG solutions: - **Natural Language Processing (NLP)**: Facilitates comprehension and generation of human-like textual communications between machines and people. - **Machine Learning Models**: Particularly those optimized for sequence prediction tasks like transformers which power both retrieval and generation components efficiently. - **Knowledge Graphs & Databases**: Provide structured storage options enabling rapid lookups during runtime operations critical for effective retrievals. - **Multimodal Fusion Techniques**: Allow seamless integration of diverse input types ensuring richer overall experiences beyond simple text-based exchanges alone. By integrating these elements cohesively, developers create robust frameworks capable of delivering sophisticated interactive services powered by cutting-edge AI methodologies. ```python # Example Python code snippet demonstrating basic structure of an Agent RAG pipeline using Hugging Face Transformers library from transformers import RagTokenizer, RagTokenForGeneration tokenizer = RagTokenizer.from_pretrained("facebook/rag-token-nq") model = RagTokenForGeneration.from_pretrained("facebook/rag-token-nq") def get_response(query): inputs = tokenizer([query], return_tensors="pt", truncation=True) out = model.generate(**inputs) answer = tokenizer.batch_decode(out, skip_special_tokens=True)[0] return answer ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值